Advertisement

Sentiment Analysis of Urdu Language: Handling Phrase-Level Negation

  • Afraz Zahra Syed
  • Muhammad Aslam
  • Ana Maria Martinez-Enriquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)

Abstract

The paper investigates and proposes the treatment of the effect of the phrase-level negation on the sentiment analysis of the Urdu text based reviews. The negation acts as the valence shifter and flips or switches the inherent sentiments of the subjective terms in the opinionated sentences. The presented approach focuses on the subjective phrases called the SentiUnits, which are made by the subjective terms (adjectives), their modifiers, conjunctions, and the negation. The final effect of these phrases is computed according to the given model. The analyzer takes one sentence from the given review, extracts the constituent SentiUnits, computes their overall effect (polarity) and then calculates the final sentence polarity. Using this approach, the effect of negation is handled within these subjective phrases. The main contribution of the research is to deal with a morphologically rich, and resource poor language, and despite of being a pioneering effort in handling negation for the sentiment analysis of the Urdu text, the results of experimentation are quit encouraging.

Keywords

Natural language processing computational linguistics sentiment analysis opinion mining shallow parsing Urdu text processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glaser, J., Dixit, J., Green, D.P.: Studying hate crime with the Internet: What makes racists advocate racial violence? Journal of Social 58(1), 177–193 (2002)Google Scholar
  2. 2.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundation and Trends in Information Retrieval 2(1-2), 1–135 (2008)Google Scholar
  3. 3.
    Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the Conference on Natural Language Learning (CoNLL), pp. 25–32 (2003)Google Scholar
  4. 4.
    Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proc. the Association for Computational Linguistics (ACL), pp. 417–424 (2002)Google Scholar
  5. 5.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proc. the Conference on Empirical Methods in Natural Language Processing (2003)Google Scholar
  6. 6.
    Syed, A.Z., Aslam, M., Martinez-Enriquez, A.M.: Lexicon Based Sentiment Analysis of Urdu Text Using SentiUnits. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010. LNCS (LNAI), vol. 6437, pp. 32–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Abdul-Mageed, M., Korayem, M.: Automatic Identification of Subjectivity in Morphologically Rich Languages: The case of Arabic. In: 1st Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, WASSA (2010)Google Scholar
  8. 8.
    Mukund, S., Ghosh, D.: Using Cross-Lingual Projections to Generate semantic Role Labeled Corpus for Urdu- A Resource Poor Language. In: 23rd International Conference on Computational Linguistics COLING (2010)Google Scholar
  9. 9.
    Hatzivassiloglou, V., McKeown, K.: Predicting the semantic orientation of adjectives. In: Proc. the Joint ACL/EACL Conference, pp. 174–181 (1997)Google Scholar
  10. 10.
    Hatzivassiloglou, V., Wiebe, J.: Effects of Adjective Orientation and Gradability on Sentence Subjectivity. In: 18th International Conference on Computational Linguistics, New Brunswick, NJ (2000)Google Scholar
  11. 11.
    Muaz, A., Ali, A., Hussain, S.: Analysis and Development of Urdu POS Tagged Corpora. In: Proc. the 7th Workshop on Asian Language Resources, IJCNLP (2009)Google Scholar
  12. 12.
    Humayoun, M., Hammarström, H., Ranta, A.: Urdu morphology, orthography and lexicon extraction. In: Farghaly, A., Megerdoomian, K. (eds.) Proceedings of the 2nd Workshop on Computational Approaches to Arabic Scriptbased Languages, Stanford LSA, pp. 59–66 (2007)Google Scholar
  13. 13.
    Schmidt, R.: Urdu: An Essential Grammar. Routlege Publishing, New York (1999)Google Scholar
  14. 14.
    Lehal, G.S.: A Word Segmentation System for Handling Space Omission Problem in Urdu Script. In: Proc. the 1st Workshop on South and Southeast Asian Natural Language Processing (WSSANLP), the 23rd International Conference on Computational Linguistics, COLING, pp. 43–50 (2010)Google Scholar
  15. 15.
    Rizvi, S.M.J., Hussain, M.: Modeling case marking systems of Urdu-Hindi languages by using semantic information. In: NLP-KE (2005)Google Scholar
  16. 16.
    Bloom, K., Argamon, S.: Unsupervised Extraction of Appraisal Expressions. In: Farzindar, A., Kešelj, V. (eds.) Canadian AI 2010. LNCS (LNAI), vol. 6085, pp. 290–294. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Whitelaw, C., Garg, N., Argamon, S.: Using appraisal groups for sentiment analysis. In: Proc. the ACM SIGIR Conference on Information and Knowledge Management (CIKM), pp. 625–631. ACM (2005)Google Scholar
  18. 18.
    Jia, L., Yu, C., Meng, W.: The effect of negation on sentiment analysis and retrieval effectiveness. ACM (2009)Google Scholar
  19. 19.
    Wiegand, M., et al.: A survey on the role of negation in sentiment analysis. In: Proceedings of the Workshop on Negation and Speculation in Natural Language Processing 2010. Association for Computational Linguistics (2010)Google Scholar
  20. 20.
    Polanyi, L., Zaenen, A.: Context Valence Shifters. In: Proceedings of the AAAI Spring Symposium on Exploring Attitude and Affect in Text (2004)Google Scholar
  21. 21.
    Kennedy, Inkpen, D.: Sentiment Classification of Movie Reviews Using Contextual Valence Shifters. In: Proceedings of FINEXIN (2005)Google Scholar
  22. 22.
    Kennedy, Inkpen, D.: Sentiment Classification of Movie Reviews Using Contextual Valence Shifters. Computational Intelligence 22 (2006)Google Scholar
  23. 23.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing Contextual Polarity in Phrase-level Sentiment Analysis. In: Proc. HLT/EMNLP (2005)Google Scholar
  24. 24.
    Moilanen, K., Pulman, S.: The Good, the Bad, and the Unknown. In: Proceedings of ACL/HLT (2008)Google Scholar
  25. 25.
    Syed, Z.A., Aslam, M., Martinez-Enriquez, A.M.: Adjectival Phrases as the Sentiment Carriers in the Urdu Text. Journal of American Science 7(3), 644–652 (2011)Google Scholar
  26. 26.
    Hardie, A.: Developing a tag-set for automated part-of-speech tagging in Urdu. In: Archer, D., Rayson, P., Wilson, A., McEnery, T. (eds.) Proc. the Corpus Linguistics Conference. UCREL Technical Papers, vol. 16, Department of Linguistics, Lancaster University, UK (2003)Google Scholar
  27. 27.
    Ijaz, M., Hussain, S.: Corpus based Urdu Lexicon Development. In: Conference on Language Technology (CLT 2007). University of Peshawar, Pakistan (2007)Google Scholar
  28. 28.
    Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Cambridge (1966)Google Scholar
  29. 29.
    Turney, P., Littman, M.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21(4), 315–346 (2003)CrossRefGoogle Scholar
  30. 30.
    Kamps, J., Marx, M., Mokken, R.J., De Rijke, M.: Using WordNet to measure semantic orientation of adjectives. In: Proceedings of LREC-04, 4th International Conference on Language Resources and Evaluation, Lisbon, PT, vol. IV, pp. 1115–1118 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Afraz Zahra Syed
    • 1
  • Muhammad Aslam
    • 2
  • Ana Maria Martinez-Enriquez
    • 2
  1. 1.Department of CS & EU.E.T.LahorePakistan
  2. 2.Department of CSCINVESTAV-IPNMexico

Personalised recommendations