Contextual Semantic Processing for a Spanish Dialogue System Using Markov Logic

  • Aldo Fabian
  • Manuel Hernandez
  • Luis Pineda
  • Ivan Meza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)


Semantic processing is vital in a dialogue system for the language understanding stage. Recent approaches of semantic processing rely on machine learning methods to perform the task. These are more robust to errors from the speech recogniser. Although these approaches are built on the domain of the dialogue system they do not incorporate contextual information available in the dialogue system. In this paper, we explore the use of contextual information in the form of expectations of a dialogue system to perform semantic processing in a Spoken Dialogue System. We show the benefits on doing so, and propose a Markov Logic model which incorporates such information.


Automatic Speech Recognition Children Speech 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Crammer, K., Singer, Y.: Ultraconservative online algorithms for multiclass problems. Journal of Machine Learning Research 3, 951–991 (2003)zbMATHGoogle Scholar
  2. 2.
    Richarson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62, 107–136 (2006)CrossRefGoogle Scholar
  3. 3.
    Mann, W.C., Thompson, S.: Rhetorical structure theory: Towards a functional theory of text organization. Text 8(3), 243–281 (1988)CrossRefGoogle Scholar
  4. 4.
    Miller, S., Stallard, D., Bobrow, R., Schwartz, R.: A fully statistical approach to natural language interfaces. In: Proc. of the Association for Computational Linguistics (1996)Google Scholar
  5. 5.
    Meza, I., Lemmon, O.: Using dialogue context to improve parsing performance in dialogue systems. In: Proceedings of IWCS-6, pp. 21–27 (2005)Google Scholar
  6. 6.
    Meza, I.V., Salinas, L., Venegas, E., Castellanos, H., Chavarría, A., Pineda, L.A.: Specification and Evaluation of a Spanish Conversational System Using Dialogue Models. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 346–355. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Pineda, L.A., Meza, I., Salinas, L.: Dialogue Model Specification and Interpretation for Intelligent Multimodal HCI. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS (LNAI), vol. 6433, pp. 20–29. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Riedel, S.: Improving the accuracy and efficiency of map inference for markov logic. In: UAI 2008: Proceedings of the Annual Conference on Uncertainty in AI (2008)Google Scholar
  9. 9.
    Zettlemoyer, L., Collins, M.: Learning Context-dependent Mappings from Sentences to Logical Form. In: Proceedings of ACL-IJCNLP (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Aldo Fabian
    • 1
  • Manuel Hernandez
    • 1
  • Luis Pineda
    • 2
  • Ivan Meza
    • 2
  1. 1.Instituto de ComputaciónUniversidad Tecnológica de la Mixteca (UTM)México
  2. 2.Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS)Universidad Nacional Autónoma de México (UNAM)México

Personalised recommendations