Advertisement

Characterization of Argumentation Semantics in Terms of the MMr Semantics

  • Mauricio Osorio
  • José Luis Carballido
  • Claudia Zepeda
  • Zenaida Cruz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)

Abstract

Argumentation theory studies the fundamental mechanism humans use in argumentation and explores ways to implement this mechanism on computers. Dung’s approach, presented in [9], is a unifying framework which has played an influential role on argumentation research. In this paper, we show that, a logic programming semantics, called MM r , can be used to characterize the preferred argumentation semantics defined by Dung in [9]. The MM r [12] is based on the the minimal model semantics. The characterization of this argumentation semantics by the MM r semantics suggests a new perception of this argumentation semantics in terms of logic foundations.

Keywords

Argumentation semantics logic programming semantics MMr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baroni, P., Giacomin, M.: Solving Semantic Problems with Odd-Length Cycles in Argumentation. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 440–451. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation semantics. Artificial Intelligence 171(10-15), 675–700 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baroni, P., Giacomin, M.: Skepticism relations for comparing argumentation semantics. Int. J. Approx. Reasoning 50(6), 854–866 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artificial Intelligence 168, 162–210 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artificial Intelligence 171(10-15), 619–641 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Caminada, M.: Semi-Stable semantics. In: Dunne, P.E., Bench-Capon, T.J. (eds.) Proceedings of COMMA, vol. 144, pp. 121–130. IOS Press (2006)Google Scholar
  7. 7.
    Carballido, J.L., Nieves, J.C., Osorio, M.: Inferring Preferred Extensions by Pstable Semantics. Revista Iberomericana de Inteligencia Artificial 13(41), 38–53 (2009)Google Scholar
  8. 8.
    Dix, J., Osorio, M., Zepeda, C.: A general theory of confluent rewriting systems for logic programming and its applications. Ann. Pure Appl. Logic 108(1-3), 153–188 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–358 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Kowalski, R., Bowen, K. (eds.) 5th Conference on Logic Programming, pp. 1070–1080. MIT Press (1988)Google Scholar
  12. 12.
    Nieves, J.C., Osorio, M., Zepeda, C.: A schema for generating relevant logic programming semantics and its applications in argumentation theory. Fundamenta Informaticae 106(2-4), 295–319 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Osorio, M., Navarro, J.A., Arrazola, J., Borja, V.: Logics with common weak completions. Journal of Logic and Computation 16(6), 867–890 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: Gabbay, D., Günthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp. 219–318. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  15. 15.
    van Dalen, D.: Logic and structure, 3rd aumented edn. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wu, Y., Caminada, M., Gabbay, D.M.: Complete extensions in argumentation coincide with 3-valued stable models in logic programming. Studia Logica 93(2-3), 383–403 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mauricio Osorio
    • 1
  • José Luis Carballido
    • 2
  • Claudia Zepeda
    • 1
  • Zenaida Cruz
    • 2
  1. 1.CENTIAUniversidad de las AméricasCholulaMéxico
  2. 2.Facultad de Ciencias de la ComputaciónBenemérita Universidad Atónoma de PueblaPueblaMéxico

Personalised recommendations