Case Studies on Invariant Generation Using a Saturation Theorem Prover

  • Kryštof Hoder
  • Laura Kovács
  • Andrei Voronkov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7094)

Abstract

Automatic understanding of the intended meaning of computer programs is a very hard problem, requiring intelligence and reasoning. In this paper we evaluate a program analysis method, called symbol elimination, that uses first-order theorem proving techniques to automatically discover non-trivial program properties. We discuss implementation details of the method, present experimental results, and discuss the relation of the program properties obtained by our implementation and the intended meaning of the programs used in the experiments.

Keywords

Theorem Prover Loop Variable Predicate Symbol Intended Meaning Invariant Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant Synthesis for Combined Theories. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 378–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Gopan, D., Reps, T.W., Sagiv, M.: A Framework for Numeric Analysis of Array Operations. In: Proc. of POPL, pp. 338–350 (2005)Google Scholar
  3. 3.
    Gulwani, S., McCloskey, B., Tiwari, A.: Lifting Abstract Interpreters to Quantified Logical Domains. In: Proc. of POPL, pp. 235–246 (2008)Google Scholar
  4. 4.
    Gulwani, S., Tiwari, A.: An Abstract Domain for Analyzing Heap-Manipulating Low-Level Software. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 379–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Halbwachs, N., Peron, M.: Discovering Properties about Arrays in Simple Programs. In: Proc. of PLDI, pp. 339–348 (2008)Google Scholar
  6. 6.
    Henzinger, T.A., Hottelier, T., Kovács, L., Rybalchenko, A.: Aligators for Arrays (Tool Paper). In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 348–356. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Hoder, K., Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination in Vampire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 188–195. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Hoder, K., Kovács, L., Voronkov, A.: Invariant Generation in Vampire. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 60–64. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theorem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Riazanov, A., Voronkov, A.: The Design and Implementation of Vampire. AI Communications 15(2-3), 91–110 (2002)MATHGoogle Scholar
  12. 12.
    Robinson, A., Voronkov, A.: Handbook of Automated Reasoning, vol. 1. Elsevier Science, Amsterdam (2001)MATHGoogle Scholar
  13. 13.
    Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate Abstraction. In: Proc. of PLDI, pp. 223–234 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kryštof Hoder
    • 1
  • Laura Kovács
    • 2
  • Andrei Voronkov
    • 1
  1. 1.University of ManchesterUK
  2. 2.TU ViennaAustria

Personalised recommendations