A Complex Network Analysis of the Weighted Graph of the Web2.0 Service Network

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 113)

Abstract

Service providers that own Web2.0 services allow Internet users not only to access their Web2.0 services but also to create new Web2.0 services (mashups) based on theirs. This creation of mashups generates the Web2.0 service network, in which a node represents a Web2.0 service and a link between two nodes represents a mashup using the two Web2.0 services linked. Since this Web2.0 service network is constructed without the control of a single entity (i.e., it is self-organizing), the network topology of the Web2.0 service network shows the scale-free characteristic. With respect of the weighting of those links, however, there are different approaches. Prior research either considered binary links or links that are weighted by summing up the number of mashups. Since the last approach might overestimate the strength of the link, we calculate the link weights according to Newman’s approach in this paper. Based on this weighted graph of the Web2.0 service network, we investigate the topology of the weighted graph and examine the pattern of Web2.0 service creations. Our results show that the Newman-based weighted graph of the Web2.0 service network shows the characteristics of a scale-free network and a small-world network.

Keywords

Web2.0 services mashup network topology analysis self-organized networks small-world networks scale-free networks complex networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the World-Wide Web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabási, A.-L.: Error and Attack Tolerance of Complex Networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Barabási, A.-L.: Linked: The New Science of Networks. Perseus Pub., Massachusetts (2002)Google Scholar
  5. 5.
    Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: he Architecture of Complex Weighted Networks. P. Natl. Acad. Sci. USA 101, 3747–3752 (2004)CrossRefGoogle Scholar
  6. 6.
    Björneborn, L.: ’Mini small worlds’ of shortest link paths crossing domain boundaries in an academic space. Scientometrics 68, 395–414 (2006)CrossRefGoogle Scholar
  7. 7.
    Feiler, J.: How to do Everything with Web2. McGraw-Hill, New York (2008)Google Scholar
  8. 8.
    Fu, F., Liu, L., Wang, L.: Empirical Analysis of Online Social Networks in the Age of Web2.0. Physica A 387, 675–684 (2008)CrossRefGoogle Scholar
  9. 9.
    Hwang, J., Altmann, J., Kim, K.: The Structural Evolution of the Web2.0 Service Network. Online Inform. Rev. 33, 1040–1057 (2009)CrossRefGoogle Scholar
  10. 10.
    Kim, B.J., Trusina, A., Minnhagen, P., Sneppen, K.: Self Organized Scale-Free Networks from Merging and Regeneration. Eur. Phys. J. B 43, 369–372 (2005)CrossRefGoogle Scholar
  11. 11.
    Kim, K., Altmann, J., Hwang, J.: Measuring and Analyzing the Openness of the Web2.0 Service Network for Improving the Innovation Capacity of the Web2.0 System through Collective Intelligence. In: 1st Symposium on Collective Intelligence, Hagen, Germany (2010)Google Scholar
  12. 12.
    Kiss, C., Bichler, M.: Identification of Influencers: measuring Influence in Customer Networks. Decis. Support Syst. 46, 233–253 (2008)CrossRefGoogle Scholar
  13. 13.
    Kuandykov, L., Sokolov, M.: Impact of social neighborhood on diffusion of innovation S-curve. Decis. Support Syst. 48, 531–535 (2010)CrossRefGoogle Scholar
  14. 14.
    Lai, L.S.L., Turban, E.: Groups Formation and Operations in the Web2.0 Environment and Social Networks. Group Decis. Negot. 17, 387–402 (2008)CrossRefGoogle Scholar
  15. 15.
    Milgram, S.: The Small-World Problem. Psychol. Today 1, 61–67 (1967)Google Scholar
  16. 16.
    Newman, M.E.J.: Scientific Collaboration Networks: II. Shortest Paths, Weighted Networks and Centrality. Phys. Rev. E 64, 016132 (2001)CrossRefGoogle Scholar
  17. 17.
    Newman, M.E.J.: Clustering and Preferential Attachment in Growing Networks. Phys. Rev. E. 64, 025102 (2001)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.J.: Power Laws, Pareto Distributions and Zipf’s Law. Contemp. Phys. 46, 323–351 (2005)CrossRefGoogle Scholar
  19. 19.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node Centrality in Weighted Networks: Generalizing Degree and Shortest Paths. Soc. Networks 32, 245–251 (2010)CrossRefGoogle Scholar
  20. 20.
    O’Reilly, T.: What is Web2.0: Design Patterns and Business Models for the Next Generation of Software. Commun. Strat. 65, 17–37 (2007)Google Scholar
  21. 21.
    Park, K., Lai, Y.-C., Ye, N.: Self-Organized Scale-Free Networks. Phys. Rev. E 72, 026131 (2005)CrossRefGoogle Scholar
  22. 22.
    Valverde, S., Solé, R.V.: Self-Organization versus Hierarchy in Open Source Social Networks. Phys. Rev. E 76, 046118 (2007)CrossRefGoogle Scholar
  23. 23.
    Wagner, C.S., Leydesdorff, L.: Network Structure, Self-Organization, and the Growth of international Collaboration in Science. Res. Policy 34, 1608–1618 (2005)CrossRefGoogle Scholar
  24. 24.
    Watts, D.J., Strogatz, S.H.: Collective Dynamics of ’Small-World’ Networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  25. 25.
    Yang, Y., Yu, X.: Weighted Small World Complex Networks: Smart Sliding Mode Control. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5755, pp. 935–944. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Yee, R.: Pro Web2.0 Mashups: Remixing Data and Web Services. Apress, New York (2008)Google Scholar
  27. 27.
    Zammetti, F.W.: Practical Javascript, DOM Scripting, and Ajax Projects. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Datentechnik und KommunikationsnetzeTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Technology Management, Economics, and Policy Program & Department of Industrial Engineering, College of EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations