Computation-by-Interaction with Effects

  • Ulrich Schöpp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7078)

Abstract

A successful approach in the semantics of programming languages is to model programs by interaction dialogues. While dialogues are most often considered abstract mathematical objects, it has also been argued that they are useful for actual computation. A manual implementation of interaction dialogues can be complicated, however. To address this issue, we consider a general method for extending a given language with a metalanguage that supports the implementation of dialogues. This method is based on the construction by Dal Lago and the author of the programming language intml, which applies interaction dialogues to sublinear space computation. We show that only few assumptions on the programming languages are needed to implement a useful intml-like metalanguage. We identify a weak variant of the Enriched Effect Calculus (EEC) of Egger, Møgelberg & Simpson as a convenient setting for capturing the structure needed for the construction of the metalanguage. In particular, function types are not needed for the construction and iteration by means of a Conway operator is sufficient. By using EEC we show how computational effects can be accounted for in the implementation of interaction dialogues.

Keywords

Game Model Computation Type Typing Rule Base Language Monoidal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of interaction and linear combinatory algebras. Mathematical Structures in Computer Science 12(5), 625–665 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abramsky, S., Jagadeesan, R.: New foundations for the geometry of interaction. Inf. Comput. 111(1), 53–119 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Comput. 163(2), 409–470 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Egger, J., Møgelberg, R.E., Simpson, A.: Enriching an Effect Calculus with Linear Types. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 240–254. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Egger, J., Møgelberg, R.E., Simpson, A.: Linearly-Used Continuations in the Enriched Effect Calculus. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 18–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Ghica, D.R.: Geometry of synthesis: a structured approach to VLSI design. In: POPL, pp. 363–375. ACM (2007)Google Scholar
  7. 7.
    Hasegawa, M.: Models of Sharing Graphs: A Categorical Semantics of let and letrec. Distinguished Dissertation Series. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Hasegawa, M.: On traced monoidal closed categories. Mathematical Structures in Computer Science 19(2), 217–244 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hasuo, I., Hoshino, N.: Semantics of Higher-Order Quantum Computation via Geometry of Interaction. In: LICS (2011)Google Scholar
  10. 10.
    Hyland, J.M.E., Luke Ong, C.-H.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–408 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Cambridge Philos. Soc. 119(3), 447–468 (1996)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kelly, G.M.: Basic Concepts of Enriched Category Theory. Lecture Notes in Mathematics, vol. 64. Cambridge University Press (1982)Google Scholar
  13. 13.
    Dal Lago, U., Schöpp, U.: Functional programming in sublinear space. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 205–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Dal Lago, U., Schöpp, U.: Type inference for sublinear space functional programming. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 376–391. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Laird, J.: Full abstraction for functional languages with control. In: LICS, pp. 58–67 (1997)Google Scholar
  16. 16.
    Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation, vol. 2. Springer, Heidelberg (2004)MATHGoogle Scholar
  17. 17.
    Mackie, I.: The geometry of interaction machine. In: POPL, pp. 198–208 (1995)Google Scholar
  18. 18.
    MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to topos theory. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Moggi, E.: Computational lambda-calculus and monads. In: LICS, pp. 14–23. IEEE Computer Society (1989)Google Scholar
  20. 20.
    Murawski, A.S., Tzevelekos, N.: Algorithmic Nominal Game Semantics. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 419–438. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Simpson, A., Plotkin, G.: Complete axioms for categorical fixed-point operators. In: LICS, pp. 30–41 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ulrich Schöpp
    • 1
  1. 1.Ludwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations