Advertisement

Temperature Effect

  • Severino P. C. Marques
  • Guillermo J. Creus
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The viscoelastic constitutive relations presented so far were developed under the hypothesis of isothermal conditions. However, most viscoelastic materials, particularly polymers, have temperature dependent constitutive relations. The mechanisms responsible for these thermal effects have micro-structural origin and are, consequently, complex. In this chapter we present a brief description on temperature effects on the linear viscoelasticity behavior of polymers and concrete and a simplified formulation that is adequate for the so called thermo-rheologically simple materials.

Keywords

Shift Factor Molecular Transition Simple Material Creep Function Basic Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Arthananari, C.W. Yu, Creep of concrete under uniaxial and biaxial stresses at elevated temperatures. Mag. Concr. Res. 19(60), 149–156 (1967)CrossRefGoogle Scholar
  2. 2.
    O.R. Barani, D. Mostofinejaad, M.M. Saadatpour, M. Shekarchi, Concrete basic creep prediction based on time–temperature equivalence relation and short-term tests. Arab. J. Sci. Eng. 35(2B), 105–121 (2010)Google Scholar
  3. 3.
    E.J. Barbero, Prediction of long-term creep of composites from doubly-shifted polymer creep data. J. Compos. Mater. 43(19), 2109–2124 (2009)CrossRefGoogle Scholar
  4. 4.
    Z.P. Bazant, M.F. Kaplan, Concrete at High Temperatures: Material Properties and Mathematical Models (Longman Group Limited, Longman House, Burnt Mill, Harlow, 1996)Google Scholar
  5. 5.
    Z.P. Bažant, J.K. Kim, Improved prediction model for time-dependent deformations of concrete: part 2—basic creep. Mater. Struct. 24, 409–421 (1991)CrossRefGoogle Scholar
  6. 6.
    Z.P. Bažant, J.K. Kim, Improved prediction model for time-dependent deformations of concrete: part 4—temperature effects. Mater. Struct. 25, 84–94 (1992)CrossRefGoogle Scholar
  7. 7.
    H.F. Brinson, L.C. Brinson, Polymer Engineering Science and viscoelasticity: An Introduction (Springer, New York, 2008)CrossRefGoogle Scholar
  8. 8.
    W. Callister Jr, Materials Science and Engineering: An Introduction (Wiley, New York, 2003)Google Scholar
  9. 9.
    J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York, 1980)Google Scholar
  10. 10.
    W.N. Findley, J.S. Lai, K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials (Dover Publications Inc., New York, 1989)Google Scholar
  11. 11.
    E.T.J. Klompen, L.E. Govaert, Nonlinear viscoelastic behaviour of thermorheologically complex materials. Mech. Time Depend. Mater. 3, 49–69 (1999)CrossRefGoogle Scholar
  12. 12.
    R.S. Lakes, Viscoelastic Solids (CRC Press LLC, Boca Raton, 1999)Google Scholar
  13. 13.
    J.C. Marechal, Creep of concrete as a function of temperature. In: International Seminar on Concrete for Nuclear Reactors, ACI Special Publication No. 34, vol. 1, American Concrete Institute, Detroit, 547–564 (1972)Google Scholar
  14. 14.
    L.W. Morland, E.H. Lee, Stress analysis for linear viscoelastic materials with temperature variation. Trans. Soc. Rheol. 4, 223 (1960)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Muki, E. Sternberg, On transient thermal stresses in viscoelastic materials with temperature-dependent properties. J. Appl. Mech. 28, 193–207 (1961)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    D.J. Plazek, Temperature dependence of the viscoelastic behavior of polysterene. J. Phys. Chem. 69, 3480–3487 (1965)CrossRefGoogle Scholar
  17. 17.
    D.J. Plazek, Oh, thermorheologically simplicity, wherefore art thou? J. Rheol. 40, 987–1014 (1996)CrossRefGoogle Scholar
  18. 18.
    F. Schwarzl, A.J. Starveman, Time-temperature dependent of linear viscoelastic behavior. J. Appl. Phys. 23, 838–843 (1952)MATHCrossRefGoogle Scholar
  19. 19.
    M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Temp. Dependence Relax. Mech. 77, 3701–3707 (1955) (Contribution from the Department of Chemistry, University of Wisconsin)Google Scholar

Copyright information

© The Authors 2012

Authors and Affiliations

  1. 1.Centro de TecnologiaUniversidade Federal de AlagoasMaceióBrazil
  2. 2.ILEAUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations