Skip to main content

Plate Perforation

  • Chapter
  • First Online:

Abstract

The process of plate perforation is the most important issue in terminal ballistics for armor engineers who seek to optimize the weight and cost of their protective designs. This subject has been the focus of a large number of studies which concentrate on two issues (1) the ballistic limit velocity for a given projectile/plate combination and (2) the projectile’s residual velocity and mass, as a function of its impact velocity. The perforation process is influenced by the back surface of the target which, together with the impact face, results in a time-varying force on the projectile during perforation. Different modes of perforation are possible and their energy absorption capabilities have to be carefully analyzed, especially when the process involves more than a single mode. For example, when thin plates are perforated they tend to stretch and bend around the impact area, absorbing a significant part of the projectile’s kinetic energy through these deformations. On the other hand, several failure modes can take place during perforation of thick plates such as spalling, petalling, discing, and plugging. These failure modes depend on several factors such as the impact velocity, the properties of the plate material, and the loading geometry (plate thickness, projectile diameter and its nose shape). These issues have been discussed by Wilkins (1978), Woodward (1990), Corbett et al. (1996), and Liu and Stronge (2000) and others. These inherent complexities call for different analytical approaches to the process of perforation, as compared with the deep penetration of rigid penetrators which were discussed in Chap. 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almohandes AA, AbdelKader MS, Eleiche AM (1996) Experimental investigation of the resistance of steel-fiberglass reinforced polyester laminated plates. Compos Part B Eng 27:447–458

    Article  Google Scholar 

  • Atkins AG, Khan MA, Liu JH (1998) Necking and radial cracking around perforations in thin sheets and normal incidence. Int J Impact Eng 21:521–539

    Article  Google Scholar 

  • Awerbuch J, Bodner SR (1974) Analysis of the mechanics of perforation of projectiles in metallic plates. Int J Solids Struct 10:671–684

    Article  Google Scholar 

  • Bai YL, Johnson W (1982) Plugging: physical understanding and energy absorption. Metal Technol 9:182–190

    Google Scholar 

  • Bishop R, Hill R, Mott NF (1945) The theory of indentation and hardness tests. Proc R Soc 57:147–159

    Article  Google Scholar 

  • Borvik T, Langseth M, Hopperstad OS, Malo KA (1999) Ballistic penetration of steel plates. Int J Impact Eng 22:885–886

    Article  Google Scholar 

  • Borvik T, Langseth M, Hopperstad OP, Malo KA (2002) Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with blunt, hemispherical and conical noses. Int J Impact Eng 27:19–35

    Article  Google Scholar 

  • Borvik T, Hopperstad OS, Langseth M, Malo KA (2003) Effect of target thickness in blunt projectile penetration of Weldox 460-E steel plates. Int J Impact Eng 28:413–464

    Article  Google Scholar 

  • Borvik T, Clausen AH, Hopperstad OS, Langseth M (2004) Perforation of AA5083-H116 aluminum plates with conical nosed steel projectiles-experimental study. Int J Impact Eng 30:367–384

    Article  Google Scholar 

  • Borvik T, Forrestal MJ, Hopperstad OS, Warren TL, Langseth M (2009) Perforation of AA5083-H116 aluminum plates with conical-nosed steel projectiles-calculations. Int J Impact Eng 36:426–437

    Article  Google Scholar 

  • Borvik T, Hopperstad OS, Pederson KO (2010) Quasi-brittle fracture during structural impact of AA7075-T651 aluminum plates. Int J Impact Eng 37:537–551

    Article  Google Scholar 

  • Cheeseman BA, Gooch WA, Burkins MS (2008) Ballistic evaluation of aluminum 2139-T8. Proceedings of the 24th international symposium on ballistics, New Orleans, Sept 2008, pp 651–659

    Google Scholar 

  • Chen YJ, Meyers MA, Nesterenko VF (1999) Spontaneous and forced shear localization in high deformation of tantalum. Mater Sci Eng 70:268

    Google Scholar 

  • Corbett GG, Reid SR, Johnson W (1996) Impact loading of plates and shells by free-flying projectiles: a review. Int J Impact Eng 18:141–230

    Article  Google Scholar 

  • Dey S, Borvik T, Hopperstad OS, Leinum JR, Langseth M (2004) The effect of target strength on the perforation of steel plates using three different projectile nose shapes. Int J Impact Eng 30:10005–1038

    Article  Google Scholar 

  • Dey S, Borvik T, Teng X, Wierzbicki T, Hopperstad OS (2007) On the ballistic resistance of double layered steel plates: an experimental and numerical investigation. Int J Solids Struct 44:6701–6723

    Article  MATH  Google Scholar 

  • Fair H (1987) Hypervelocity then and now. Int J Impact Eng 5:1–11

    Article  Google Scholar 

  • Flockhart CJ, Woodward RL, Lam YC, O’Donell RG (1991) The use of velocity discontinuities to define shear failure trajectories in dynamic plastic deformations. Int J Impact Eng 11:93–106

    Article  Google Scholar 

  • Forrestal MJ, Rosenberg Z, Luk VK, Bless SJ (1987) Perforation of aluminum plates by conical nosed projectiles. J App Mech 54:230–232

    Article  Google Scholar 

  • Forrestal MJ, Luk VK, Brar NS (1990) Perforation of aluminum armor plates with conical nosed projectiles. Mech Mater 10:97–105

    Article  Google Scholar 

  • Forrestal MJ, Borvik T, Warren TL (2010) Perforation of 7075-T651 aluminum armor plates with 7.62 mm APM2 bullets. Exp Mech 50:1245–1251

    Article  Google Scholar 

  • Gogolewski RP, Cunningham BJ, Riddle RA (1996) On the importance of target material interfaces during low speed impact. In: Proceedings of the 16th international symposium on ballistics, San Francisco, vol 3, Sept 1996, pp 751–760

    Google Scholar 

  • Goldsmith W, Finnegan SA (1971) Penetration and perforation processes in metal targets at and above ballistic limits. Int J Mech Sci 13:843–866

    Article  Google Scholar 

  • Gupta NK, Madhu V (1997) An experimental study of normal and oblique impact of hard-core projectile on single and layered plates. Int J Impact Eng 19:395–414

    Article  Google Scholar 

  • Hermann W, Wilbeck JS (1987) Review of hypervelocity penetration theories. Int J Impact Eng 5:307–322

    Article  Google Scholar 

  • Lambert JP, Jonas GH (1976) Towards standardization in terminal ballistics testing. Ballistic Research Laboratories Report No. 1852 (ADA-021389)

    Google Scholar 

  • Landkof B, Goldsmith W (1985) Petalling of thin metallic plates during penetration by cylindro-conical projectiles. Int J Solids Struct 21:245–266

    Article  Google Scholar 

  • Li JR, Yu JL, Wu ZG (2003) Influence of specimen geometry on adiabatic shear instability of tungsten heavy alloys. Int J Impact Eng 28:303

    Article  Google Scholar 

  • Liss J, Goldsmith W, Kelly JM (1983) A phenomenological penetration model of plates. Int J Impact Eng 1:321–341

    Article  Google Scholar 

  • Liu D, Stronge WJ (2000) Ballistic limit of metallic plates struck by blunt deformable missiles: experiments. Int J Solids Struct 37:1403–1423

    Article  Google Scholar 

  • Marom I, Bodner SR (1979) Projectile perforation of multi-layered beams. Int J Mech Sci 21:489–504

    Article  Google Scholar 

  • Piekutowski AJ (1996) Formation and description of debris clouds produced by hypervelocity impact. NASA contract report 4707, Feb 1996

    Google Scholar 

  • Piekutowski AJ, Forrestal MJ, Poormon KL, Warren TL (1996) Perforation of aluminum plates with ogive nosed steel rods at normal and oblique impacts. Int J Impact Eng 18:877–887

    Article  Google Scholar 

  • Ravid M, Bodner SR (1983) Dynamic perforation of viscoplastic plates by rigid projectiles. Int J Eng Sci 21:577–591

    Article  Google Scholar 

  • Recht R, Ipson TW (1963) Ballistic perforation dynamics. J App Mech 30:384–390

    Article  Google Scholar 

  • Rice JR, Levy N (1969) Local heating by plastic deformation of a crack tip. In: Argon AS (ed) Physics of strength and plasticity. MIT Press, Cambridge, pp 277–293

    Google Scholar 

  • Rittel D, Wang ZG, Dorogoy A (2008) Geometrical imperfection and adiabatic shear banding. Int J Impact Eng 35:1280–1292

    Article  Google Scholar 

  • Rosenberg Z, Dekel E (2009b) On the deep penetration and plate perforation by rigid projectiles. Int J Solids Struct 46:4169–4180

    Article  MATH  Google Scholar 

  • Rosenberg Z, Dekel E (2010c) Revisiting the perforation of ductile plates by sharp-nosed rigid projectiles. Int J Solids Struct 47:3022–3033

    Article  MATH  Google Scholar 

  • Rosenberg Z, Ashuach Y, Kreif R (2010) The effect of specimen dimensions on the propensity to adiabatic shear failure in Kolsky bar experiments. Rev Mater 15:316–324

    Google Scholar 

  • Senf H, Weimann K (1973) Die wirkung von stahlkugeln auf dural–einfach–und mehrplattenziele. EMI report no. V6-73 (in German)

    Google Scholar 

  • Swift HF (1982) Image forming instruments. In: Zukas JA, Nicholas T, Swift HF, Greszczuk LB, Curran DR (eds) Impact dynamics. Wiley, New York, pp 241–275

    Google Scholar 

  • Tabor D (1951) The hardness of metals. Oxford University Press, London

    Google Scholar 

  • Teng XQ, Dey S, Borvik T, Wierzbicki T (2007) Protection perforation of double-layered metal shields against projectile impact. J Mech Mater Struct 2:1309–1330

    Article  Google Scholar 

  • Thomson WT (1955) An approximate theory of armor penetration. J Appl Phys 26:80–82

    Article  Google Scholar 

  • Wen HM, Jones N (1996) Low velocity perforation of punch impact loaded plates. J Press Vessel Technol 118:181–187

    Article  Google Scholar 

  • Whipple FL (1947) Meteorites and space travel. Astron J, No. 1161, Feb 1947, p 131

    Google Scholar 

  • Wierzbicki T (1999) Petalling of plates under explosive and impact loading. Int J Impact Eng 22:935–944

    Article  Google Scholar 

  • Wilkins ML (1978) Mechanics of penetration and perforation. Int J Eng Sci 16:793–807

    Article  Google Scholar 

  • Wingrove AL (1973) The influence of projectile geometry on adiabatic shear and target failure. Metall Trans 4:1829–1833

    Article  Google Scholar 

  • Woodward RL (1978) The penetration of metal targets by conical projectiles. Int J Mech Sci 20:349–359

    Article  Google Scholar 

  • Woodward RL (1987) A structural model for thin plate perforation by normal impact of blunt projectiles. Int J Impact Eng 6:128–140

    Article  Google Scholar 

  • Woodward RL (1990) Material failure at high strain rates. In: Zukas JA (ed) High velocity impact dynamics. John Wiley and Sons, Inc., New York, pp 65–126

    Google Scholar 

  • Woodward RL, Cimpoeru SJ (1998) A study of the perforation of aluminum laminate targets. Int J Impact Eng 21:117–131

    Article  Google Scholar 

  • Woodward RL, De-Morton ME (1976) Penetration of targets by a flat-ended projectile. Int J Mech Sci 18:119–127

    Article  Google Scholar 

  • Woodward RL, Baxter BJ, Scarlett NV (1984) Mechanics of adiabatic shear plugging in high strength aluminum and titanium alloys. Proceedings of the third conference on the mechanical properties of materials at high rates of strain, Oxford, April 1984, Institute of Physics Conference Series No. 70, pp 525–532

    Google Scholar 

  • Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15:22–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zvi Rosenberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenberg, Z., Dekel, E. (2012). Plate Perforation. In: Terminal Ballistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25305-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25305-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25304-1

  • Online ISBN: 978-3-642-25305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics