A Method for Transferring Probabilistic User Models between Environments

  • David L. Roberts
  • Fred Roberts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7069)


Chief among the inputs to decision making algorithms in narrative or game environments is a model of player or opponent decision making. A challenge that will always face designers is to specify that model ahead of time, when actual data from the environment is likely not to be available. Absent corpora of data, designers must intuit these models as best they can, incorporating domain or expert knowledge when available. To make this process more precise, we derive a theoretically grounded technique to transfer an observed user model from one domain to another. We answer the question: “How can a model obtained from observations of one environment inform a model for another environment?” We verify the accuracy of our techniques using data from previous user studies.


Utility Model Player Behavior Source Domain Lottery Ticket Game Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bates, J.: Virtual Reality, Art, and Entertainment. Presence: The Journal of Teleoperators and Virtual Environments 2, 133–138 (1992)CrossRefGoogle Scholar
  2. 2.
    Cialdini, R.B.: Influence: The Psychology of Persuasion. Collins (1998)Google Scholar
  3. 3.
    Falmagne, J.C.: Foundations of Fechnerian Psychophysics. In: Krantz, D.H., Atkinson, R.C., Luce, R.D., Suppes, P. (eds.) Contemporary Developments in Mathematical Psychology. Freeman (1974)Google Scholar
  4. 4.
    Folkes, V.S., Martin, I.M., Gupta, K.: When to Say When: Effects of Supply on Usage. Journal of Consumer Research 20, 467–477 (1993)CrossRefGoogle Scholar
  5. 5.
    Guilford, J.P.: Psychometric Methods, 2nd edn. Macmillan (1954)Google Scholar
  6. 6.
    Johnson, E.J., Bellman, S., Lohse, G.: Defaults, framing and privacy: Why opting in ≠ opting out. Marketing Letters 13(1), 5–15 (2002)CrossRefGoogle Scholar
  7. 7.
    Laurel, B.: Toward the Design of a Computer-Based Interactive Fantasy System. Ph.D. thesis, Drama department, Ohio State University (1986)Google Scholar
  8. 8.
    Luce, R.D.: Individual Choice Behavior. Wiley (1959)Google Scholar
  9. 9.
    Luce, R.D., Galanter, E.: Discrimination. In: Luce, R.D., Bush, R.R., Galanter, E. (eds.) Handbook of Mathematical Psychology, vol. 1, pp. 191–243 (1963)Google Scholar
  10. 10.
    Mateas, M.: An Oz-Centric Review of Interactive Drama and Believable Agents. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 297–328. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Nelson, M.J., Mateas, M., Roberts, D.L., Isbell, C.L.: Declarative Optimization-Based Drama Management in the Interactive Fiction Anchorhead. IEEE Computer Graphics and Applications (Special Issue on Interactive Narrative) 26(3), 30–39 (2006)Google Scholar
  12. 12.
    Nelson, M.J., Roberts, D.L., Isbell, C.L., Mateas, M.: Reinforcement Learning for Declarative Optimization-Based Drama Management. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2006 (2006)Google Scholar
  13. 13.
    Regan, D.T.: Effects of a Favor and Liking on Compliance. J. of Experimental Social Psychology 7, 627–639 (1971)CrossRefGoogle Scholar
  14. 14.
    Roberts, D.L.: Computational Approaches for Reasoning About and Shaping Player Experiences in Interactive Narratives. Ph.D. thesis, Georgia Tech. (2010)Google Scholar
  15. 15.
    Roberts, D.L., Bhat, S., Clair, K.S., Isbell, C.L.: Authorial Idioms for Target Distributions in TTD-MDPs. In: Proc. of the 22nd Conf. on Artificial Intelligence, AAAI 2007 (2007)Google Scholar
  16. 16.
    Roberts, D.L., Furst, M.L., Isbell, C.L., Dorn, B.: Using Influence and Persuasion to Shape Player Experiences. In: 2009 Sandbox: ACM SIGGRAPH Video Game Proceedings, SIGGRAPH Sandbox (2009)Google Scholar
  17. 17.
    Roberts, D.L., Isbell, C.L.: A Survey and Qualitative Analysis of Recent Advances in Drama Management. International Transactions on Systems Science and Applications, Special Issue on Agent Based Systems for Human Learning 3(1), 61–75 (2008)Google Scholar
  18. 18.
    Roberts, D.L., Nelson, M.J., Isbell, C.L., Mateas, M., Littman, M.L.: Targeting Specific Distributions of Trajectories in MDPs. In: Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006 (2006)Google Scholar
  19. 19.
    Sullivan, A., Chen, S., Mateas, M.: Integrating Drama Management into an Adventure Game. In: Proc. of the Fourth Conf. on Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2008). AAAI Press (2008)Google Scholar
  20. 20.
    Sullivan, A., Chen, S., Mateas, M.: From Abstraction to Reality: Integrating Drama Management into a Playable Game Experience. In: Proc. of the 2009 AAAI Spring Symposium on Intelligent Narrative Technologies II (2009)Google Scholar
  21. 21.
    Thurstone, L.L.: A Law of Comparative Judgement. Psych. Review 34, 273–286 (1927)CrossRefGoogle Scholar
  22. 22.
    Thurstone, L.L.: Psychophysical Analysis. American J. of Psychology 38, 368–389 (1927)CrossRefGoogle Scholar
  23. 23.
    Weyhrauch, P.: Guiding Interactive Drama. Ph.D. thesis, School of Computer Science (1997)Google Scholar
  24. 24.
    Zermelo, E.: Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 29 (1929)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David L. Roberts
    • 1
  • Fred Roberts
    • 2
  1. 1.Department of Computer ScienceNorth Carolina State UniversityUSA
  2. 2.DIMACSRutgers UniversityUSA

Personalised recommendations