Adaptive Storytelling and Story Repair in a Dynamic Environment

  • Richard Paul
  • Darryl Charles
  • Michael McNeill
  • David McSherry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7069)


Most stories constructed by game designers are inherently linear in nature, with the result that player interactions have limited impact on the direction of the game narrative. Massively multiplayer online role-play games (MMORPGs) typically contain thousands of linearly scripted storylines, and stories generally do not adapt to player interactions or changes in the gameworld state. However, there is some evidence that interactive storytelling techniques may have the potential to enhance narrative experience in these online worlds. An important challenge is the need for ongoing stories to be seamlessly adapted when story plans are invalidated by unforeseen events in the game world, such as the actions of player characters. In this paper we present novel techniques for repairing story plans while maintaining plot coherence and demonstrate their ability to enhance the robustness of adaptive storytelling in dynamic game worlds.


multiplayer games interactive storytelling virtual worlds hierarchical task networks planning story repair 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Electronic Arts: Mass Effect 3 (2012) Google Scholar
  2. 2.
    Sony Computer Entertainment: Heavy Rain (2010) Google Scholar
  3. 3.
    Klug, C.: Implementing Stories in Massively Multiplayer Games (2002),
  4. 4.
    Tychsen, A., Hitchens, M.: Ghost Worlds – Time and Consequence in MMORPGs. In: Göbel, S., Malkewitz, R., Iurgel, I. (eds.) TIDSE 2006. LNCS (LNAI), vol. 4326, pp. 300–311. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Paul, R., Charles, D., McNeill, M., McSherry, D.: MIST: An Interactive Storytelling System with Variable Character Behavior. In: Aylett, R., Lim, M.Y., Louchart, S., Petta, P., Riedl, M. (eds.) ICIDS 2010. LNCS, vol. 6432, pp. 4–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fairclough, C.R.: Story Games and the OPIATE System. PhD Thesis. Trinity College Dublin (2004)Google Scholar
  7. 7.
    Propp, V.Y.: Morphology of the Folk Tale. University of Texas Press (1977)Google Scholar
  8. 8.
    Tomaszewski, Z., Binsted, K.: The Limitations of a Propp-based Approach to Interactive Drama. In: AAAI 2007 Fall Symposium on Intelligent Narrative Technologies, Menlo Park, CA (2007)Google Scholar
  9. 9.
    Magerko, B.: Story Representation and Interactive Drama. In: Young, M.R., Laird, J.E. (eds.) Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 87–92. AAAI Press (2005)Google Scholar
  10. 10.
    Riedl, M.O., Stern, A., Dini, D., Alderman, J.: Dynamic Experience Management in Virtual Worlds for Entertainment, Education, and Training. International Transactions on Systems Science and Applications 4, 23–42 (2008)Google Scholar
  11. 11.
    Barber, H.: Generator of Adaptive Dilemma-based Interactive Narratives. PhD Thesis. University of York (2008)Google Scholar
  12. 12.
    Blum, A.L., Furst, M.L.: Fast Planning Through Planning Graph Analysis. Artif. Intell. 90, 281–300 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin, R.J., Saretto, C.J.: An Architecture for Integrating Plan-based Behavior Generation with Interactive Game Environments. Journal of Game Development 1, 51–70 (2004)Google Scholar
  14. 14.
    Cavazza, M., Charles, F., Mead, S.J.: Character-based Interactive Storytelling. IEEE Intelligent Systems 17, 17–24 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Georgeff, M., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.J.: The Belief-Desire-Intention Model of Agency. In: Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Erol, K.: Hierarchical Task Network Planning: Formalization, Analysis, and Implementa-tion. PhD Thesis. University of Maryland (1996)Google Scholar
  17. 17.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artif. Intell. 2, 189–208 (1971)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lekavý, M., Návrat, P.: Expressivity of STRIPS-like and HTN-like Planning. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 121–130. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Riedl, M.O., Young, R.M.: Narrative Planning: Balancing Plot and Character. J. Artif. Intell. Res. 39, 217–268 (2010)zbMATHGoogle Scholar
  20. 20.
    Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Wu, D., Yaman, F., Muñoz-Avila, H., Mur-dock, J.W.: Applications of SHOP and SHOP2. IEEE Intelligent Systems 20, 34–41 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Richard Paul
    • 1
  • Darryl Charles
    • 1
  • Michael McNeill
    • 1
  • David McSherry
    • 1
  1. 1.School of Computing and Information EngineeringUniversity of UlsterColeraineNorthern Ireland, UK

Personalised recommendations