Query Expansion Methods and Performance Evaluation for Reusing Linking Open Data of the European Public Procurement Notices

  • Jose María Álvarez
  • José Emilio Labra
  • Ramón Calmeau
  • Ángel Marín
  • José Luis Marín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7023)


The aim of this paper is to present some methods to expand user queries and a performance evaluation to retrieve public procurement notices in the e-Procurement sector using semantics and linking open data. Taking into account that public procurement notices contain information variables like type of contract, region, duration, total value, target enterprise, etc. different methods can be applied to expand user queries easing the access to the information and providing a more accurate information retrieval system. Nevertheless expanded user queries can involve an extra-time in the process of retrieving notices. That is why a performance evaluation is outlined to tune up the semantic methods and the generated queries providing a scalable and time-efficient system. On the other hand this system is based on the use of semantic web technologies so it is necessary to model the unstructured information included in public procurement notices (organizations, contracting authorities, contracts awarded, etc.), enrich that information with existing product classification systems and linked data vocabularies and publish the relevant data extracted out of the notices following the linking open data approach. In this new LOD realm these techniques are considered to provide added-value services like search, matchmaking geo-reasoning, or prediction, specially relevant to small and medium enterprises (SMEs).


Execution Time Virtual Machine Query Expansion User Query Public Procurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, A., Kiefer, C., Stocker, M.,, O.: A sparql optimization approach based on triple pattern selectivity estimation. Technical report, University of Zurich, Department of (2007)Google Scholar
  2. 2.
    Alor-Hernández, G., Gómez Berbís, J.M., Rodríguez González, A., et al.: HYDRA: A Middleware-Oriented Integrated Architecture for e-Procurement in Supply Chains. T. Computational Collective Intelligence 1, 1–20 (2010)Google Scholar
  3. 3.
    Bellaachia, A., Amor-Tijani, G.: Enhanced query expansion in english-arabic clir. In: Proceedings of the 2008 19th International Conference on Database and Expert Systems Application, pp. 61–66. IEEE Computer Society, Washington, DC, USA (2008)Google Scholar
  4. 4.
    Berrueta, D., Labra, J.E., Polo, L.: Searching over Public Administration Legal Documents Using Ontologies. In: JCKBSE, pp. 167–175 (2006)Google Scholar
  5. 5.
    Blanco, R., Bortnikov, E., Junqueira, F., Lempel, R., Telloli, L., Zaragoza, H.: Caching search engine results over incremental indices. In: Proceeding of the 33rd ACM SIGIR 2010 Conference, SIGIR 2010, pp. 82–89. ACM, New York (2010)Google Scholar
  6. 6.
    Arenas, M., Buil-Aranda, C., Corcho, O.: Semantics and optimization of the SPARQL 1.1 federation extension. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 201. LNCS, vol. 6644, pp. 1–15. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Cohen, P.R., Kjeldsen, R.: Information Retrieval by Constrained Spreading Activation in Semantic Networks. Inf. Process. Manage. 23(4), 255–268 (1987)CrossRefGoogle Scholar
  8. 8.
    Emrouznejad, A., Amin, G.R.: Document similarity: a new measure using owa. In: Proc. of the 6th FSKD 2009, Piscataway, NJ, USA, pp. 186–190 (2009)Google Scholar
  9. 9.
    Hepp, M.: Possible Ontologies. IEEE-Internet Computing 1, 90–96 (2007)CrossRefGoogle Scholar
  10. 10.
    Leukel, J., Schmitz, V., et al.: Exchange Of Catalog Dat. In: B2B Relationships - Analysis And ImprovementGoogle Scholar
  11. 11.
    Marín, J., Labra, J.: Doing Business by selling free services. In: Ordóńez, P., et al. (eds.) Web 2.0: The Business Model, part 6, pp. 89–102. Springer, Heidelberg (2009)Google Scholar
  12. 12.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th WWW 2010, pp. 771–780. ACM, New York (2010)Google Scholar
  13. 13.
    Rocha, C., al, D.S.e.: A Hybrid Approach for Searching in the Semantic Web. In: WWW, pp. 374–383 (2004)Google Scholar
  14. 14.
    Schmidt, M., Meier, M., Lausen, G.: Foundations of sparql query optimization. In: Proceedings of the 13th International Conference on Database Theory, ICDT 2010, pp. 4–33. ACM, New York (2010)Google Scholar
  15. 15.
    Yan, Y., Wang, C., Zhou, A.: Efficiently querying rdf data in triple stores. In: Proceeding of the 17th WWW 2008, pp. 1053–1054. ACM, New York (2008)Google Scholar
  16. 16.
    Álvarez, J., Rubiera, E., Polo, L.: Promoting Government Controlled Vocabularies for the Semantic Web: the EUROVOC Thesaurus and the CPV Product Classification System (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jose María Álvarez
    • 1
  • José Emilio Labra
    • 1
  • Ramón Calmeau
    • 2
  • Ángel Marín
    • 3
  • José Luis Marín
    • 3
  1. 1.WESO Research Group-Universidad de OviedoSpain
  2. 2.EXIS TIUS
  3. 3.Gateway Strategic Consultancy ServicesSpain

Personalised recommendations