Heuristic Multiobjective Search for Hazmat Transportation Problems

  • Enrique Machuca
  • Lawrence Mandow
  • José Luis Pérez de la Cruz
  • Antonio Iovanella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7023)


This paper describes the application of multiobjective heuristic search algorithms to the problem of hazardous material (hazmat) transportation. The selection of optimal routes inherently involves the consideration of multiple conflicting objectives. These include the minimization of risk (e.g. the exposure of the population to hazardous substances in case of accident), transportation cost, time, or distance. Multiobjective analysis is an important tool in hazmat transportation decision making. This paper evaluates the application of multiobjective heuristic search techniques to hazmat route planning. The efficiency of existing algorithms is known to depend on factors like the number of objectives and their correlations. The use of an informed multiobjective heuristic function is shown to significantly improve efficiency in problems with two and three objectives. Test problems are defined over random graphs and over a real road map.


Random Graph Heuristic Search Hazardous Material Route Planning Heuristic Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abkowitz, M., Cheng, P.D.: Developing a risk/cost framework for routing truck movements of hazardous materials. Accident Analysis & Prevention 20(1), 39–51 (1988)CrossRefGoogle Scholar
  2. 2.
    Caramia, M., Giordani, S., Iovanella, A.: On the selection of k routes in multiobjective hazmat route planning. IMA Journal of Management Mathematics 21, 239–251 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cox, R.G.: Routing and scheduling of hazardous materials shipments: algorithmic approaches to managing spent nuclear fuel transport. Ph.D. thesis, Cornell University, Ithaca, NY (1984)Google Scholar
  4. 4.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  6. 6.
    Erkut, E., Ingolfsson, A.: Transport risk models for hazardous materials: revisited. Operations Research Letters 33(1), 81–89 (2005)CrossRefzbMATHGoogle Scholar
  7. 7.
    Erkut, E., Tjandra, S.A., Verter, V.: Hazardous Materials Transportation. In: Barnhart, C., Laporte, G. (eds.) Handbook in OR and MS, vol. 14, pp. 539–621. Elsevier (2007)Google Scholar
  8. 8.
    Erkut, E., Verter, V.: Modeling of transport risk for hazardous materials. Operations Research 46(5), 625–642 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph theory. In: SODA 2005 Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 156–165 (2005)Google Scholar
  10. 10.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.F.: Better Landmarks Within Reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Hansen, P.: Bicriterion path problems. Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Heidelberg (1979)Google Scholar
  12. 12.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Systems Science and Cybernetics SSC-4(2), 100–107 (1968)CrossRefGoogle Scholar
  13. 13.
    Kara, B.Y., Erkut, E., Verter, V.: Accurate calculation of hazardous materials transport risks. Operations Research Letters 31(4), 285–292 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Mandow, L., Pérez de la Cruz, J.L.: A new approach to multiobjective A* search. In: Proc. of the XIX Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 218–223 (2005)Google Scholar
  15. 15.
    Mandow, L., Pérez de la Cruz, J.L.: Multiobjective A* search with consistent heuristics. Journal of the ACM 57(5), 27:1–27:25 (2010)Google Scholar
  16. 16.
    Martins, E.: On a multicriteria shortest path problem. European Journal of Operational Research 16, 236–245 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pearl, J.: Heuristics. Addison-Wesley, Reading (1984)Google Scholar
  18. 18.
    Stewart, B.S., White, C.C.: Multiobjective A*. Journal of the ACM 38(4), 775–814 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tung, C.T., Chew, K.L.: A multicriteria Pareto-optimal path algorithm. European Journal of Operational Research 62, 203–209 (1992)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wijeratne, A.B., Turnquist, M.A., Mirchandani, P.B.: Multiobjective routing of hazardous materials in stochastic networks. European Journal of Operational Research 65(1), 33–43 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Enrique Machuca
    • 1
  • Lawrence Mandow
    • 1
  • José Luis Pérez de la Cruz
    • 1
  • Antonio Iovanella
    • 2
  1. 1.Dpto. Lenguajes y Ciencias de la ComputaciónUniversidad de MálagaMálagaSpain
  2. 2.Dipartimento di Ingegneria dell’ImpresaUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations