Advertisement

Differential Evolution for High Scale Dynamic Optimization

  • Mikołaj Raciborski
  • Krzysztof Trojanowski
  • Piotr Kaczyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7053)

Abstract

This paper studies properties of a differential evolution approach (DE) for dynamic optimization problems. An adaptive version of DE, namely the jDE algorithm has been applied to two well known benchmarks: Generalized Dynamic Benchmark Generator (GDBG) and Moving Peaks Benchmark (MPB). The experiments have been performed for different numbers of the search space dimensions starting from five until 30. The results show the influence of the problem complexity on the quality of the returned results both in case of varying and constant number of fitness function calls between subsequent changes.

Keywords

Search Space Differential Evolution Evolutionary Computation Dynamic Optimization Dynamic Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Branke, J.: Memory enhanced evolutionary algorithm for changing optimization problems. In: Proc. of the Congr. on Evolutionary Computation, vol. 3, pp. 1875–1882. IEEE Press, Piscataway (1999)Google Scholar
  2. 2.
    Brest, J., Boskovic, B., Greiner, S., Zumer, V., Maucec, M.S.: Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput. 11(7), 617–629 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  4. 4.
    Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimization using self-adaptive differential evolution. In: IEEE Congr. on Evolutionary Computation, pp. 415–422. IEEE (2009)Google Scholar
  5. 5.
    Feokistov, V.: Differential Evolution. In: Search of Solutions, Optimization and Its Applications, vol. 5. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE Trans. Evol. Comput. 10(5), 590–603 (2006)CrossRefGoogle Scholar
  7. 7.
    Guennebaud, G., Jacob, B., et al.: Eigen v2.0.15 (2010), http://eigen.tuxfamily.org
  8. 8.
    Jin, Y., Branke, J.: Evolutionary algorithms in uncertain environments – a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRefGoogle Scholar
  9. 9.
    Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Li, C., Yang, S.: A generalized approach to construct benchmark problems for dynamic optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimization. In: IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, pp. 68–75 (2005)Google Scholar
  12. 12.
    Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary environments. In: Proc. Congr. on Evolutionary Computation, vol. 3, pp. 1859–1866. IEEE Press, Piscataway (1999)Google Scholar
  13. 13.
    Price, K.V.: Genetic annealing. Dr. Dobb’s Journal, 127–132 (October 1994)Google Scholar
  14. 14.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  15. 15.
    Tinós, R., Yang, S.: Continuous dynamic problem generators for evolutionary algorithms. In: IEEE Congr. on Evolutionary Computation, pp. 236–243. IEEE (2007)Google Scholar
  16. 16.
    Trojanowski, K.: Properties of quantum particles in multi-swarms for dynamic optimization. Fundamenta Informaticae 95(2-3), 349–380 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environments. In: Proc. of the Congr. on Evolutionary Computation, vol. 3, pp. 1843–1850. IEEE Press, Piscataway (1999)Google Scholar
  18. 18.
    Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. In: Proc. of the 2003 IEEE Congr. on Evolutionary Computation CEC 2003, pp. 2246–2253. IEEE Press (2003)Google Scholar
  19. 19.
    Yang, S., Ong, Y.-S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and Uncertain Environments. SCS. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  20. 20.
    Yang, S., Yao, X.: Population-based incremental learning with associative memory for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yuan, B., Gallagher, M.: On building a principled framework for evaluating and testing evolutionary algorithms: a continuous landscape generator. In: IEEE Congr. on Evolutionary Computation, pp. 451–458. IEEE (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mikołaj Raciborski
    • 1
  • Krzysztof Trojanowski
    • 2
  • Piotr Kaczyński
    • 1
  1. 1.Faculty of Mathematics and Natural SciencesCardinal Stefan Wyszyński UniversityWarsawPoland
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations