Cobalt-Catalyzed Hydroformylation and Cobalt Carbonyl Clusters: Recent Computational Studies

Chapter

Abstract

Recent density functional theory computations of cobalt-catalyzed hydroformylation of propene, N-vinyl acetamide, 1,3-butadiene, acetylene, propyne, and allene and the urea formation from methyl amine as well as Pauson–Khand reaction have been reviewed. The detailed catalytic mechanism and regioselectivity have been discussed and compared with the available experimental data. It shows that modern computational chemistry provides not only qualitative but also quantitative aspects of catalytic reactions.

Keywords

Oxidative Addition Homogeneous Catalysis Reductive Elimination Activation Free Energy Reaction Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cornils B, Herrmann WA (2002) Applied homogeneous catalysis with organometallic compounds, vol 1. Wiley, WeinheimGoogle Scholar
  2. 2.
    Spessard GO, Miessler GL (1997) Organometallic chemistry. Prentice-Hall, Upper Saddle River, NJGoogle Scholar
  3. 3.
    Parshall GW, Ittel SD (1992) Homogeneous catalysis. Wiley-Interscience, New YorkGoogle Scholar
  4. 4.
    Kaupp G (1994) Angew Chem Int Ed Engl 33:1452–1455Google Scholar
  5. 5.
    Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE (1995) AIChE J 41:1723–1778Google Scholar
  6. 6.
    Rathke JW, Klingler RJ, Krause TR (1991) Organometallics 10:1350–1355Google Scholar
  7. 7.
    Guo Y, Akgerman A (1997) Ind Eng Chem Res 36:4581–4585Google Scholar
  8. 8.
    Ke J, Han B, George MW, Yan H, Poliakoff M (2001) J Am Chem Soc 123:3661–3670Google Scholar
  9. 9.
    Stinson SC (1999) Chem Eng News 77:65Google Scholar
  10. 10.
    Niu S, Hall MB (2000) Chem Rev 100:353–406 and references cited thereinGoogle Scholar
  11. 11.
    Torrent M, Solà M, Frenking G (2000) Chem Rev 100:439–493 and references cited thereinGoogle Scholar
  12. 12.
    van Leeuwen PWNM, Morokuma K, van Lenthe JH (1995) Theoretical aspects of homogeneous catalysis, application of ab initio molecular orbital theory. Kluwer Academic, DordrechtGoogle Scholar
  13. 13.
    Carbo JJ, Maseras F, Bo C (2002) In: Maseras F, Lledos A (eds) Computational modeling of homogeneous catalysis, Kluwer Academic, DordrechtGoogle Scholar
  14. 14.
    Ujaque G, Maseras F (2004) Application of hybrid DFT/molecular mechanics to homogeneous catalysis. Struct. Bond. 112:117–149Google Scholar
  15. 15.
    Gual A, Godard C, Claver C, Castillon S (2009) Eur J Org Chem 1191–1201Google Scholar
  16. 16.
    Vautravers NR, Cole-Hamilton DJ (2009) Chem Commun 92–94Google Scholar
  17. 17.
    Selent D, Baumann W, Wiese K-D, Börner A (2008) Chem Commun 6203–6205Google Scholar
  18. 18.
    Watkins AL, Hashiguchi BG, Landis CR (2008) Org Lett 10:4553–4556Google Scholar
  19. 19.
    Goudriaan PE, Jang X-B, Kuil M, Lemmens R, van Leeuwem PWNM, Reek JNH (2008) Eur J Org Chem 6079–6092Google Scholar
  20. 20.
    Piras I, Jennerjahn R, Jackstell R, Baumann W, Spannenberg A, Franke R, Wiese K-D, Beller M (2010) J Organomet Chem 695:479–486Google Scholar
  21. 21.
    Roelen O (1938) (Ruhrchemie AG). D. B. P. 849:458Google Scholar
  22. 22.
    Roelen O (1953) (Ruhrchemie AG). Chem. Zentr. 927Google Scholar
  23. 23.
    Beller M, Seayad J, Tillack A, Jiao H (2004) Angew Chem Int Ed 43:3368–3398Google Scholar
  24. 24.
    Crabtree RH (1988) The organometallic chemistry of the transition metals. Wiley, New YorkGoogle Scholar
  25. 25.
    Feng J, Garland M (1999) Organometallics 18:417–427Google Scholar
  26. 26.
    Paciello R, Siggel L, Röper M (1999) Angew Chem Int Ed Engl 38:1920–1923Google Scholar
  27. 27.
    Agbossou F, Carpentier J-F, Mortreux A (1995) Chem Rev 95:2485–2506Google Scholar
  28. 28.
    Collins AN, Sheldrake GN, Crosby J (1992) Chirality in industry. Wiley, ChichesterGoogle Scholar
  29. 29.
    Consiglio G (1993) In: Ojima I (ed) Catalysis in asymmetric synthesis. VCH Publishers Inc., New YorkGoogle Scholar
  30. 30.
    Dwyer C, Assumption H, Coetzee J, Crause C, Damoense L, Kirk M (2004) Coord Chem Rev 248:653–669Google Scholar
  31. 31.
    Damoense L, Datt M, Green M, Steenkamp C (2004) Coord Chem Rev 248:2393–2407Google Scholar
  32. 32.
    Kamer PCJ, van Rooy A, Schoemaker GC, van Leeuwen PWNM (2004) Coord Chem Rev 248:2409–2424Google Scholar
  33. 33.
    Freixa Z, van Leeuwen PWNM (2003) Dalton Trans 1890–1901Google Scholar
  34. 34.
    Breit B (2003) Acc Chem Res 36:264–275Google Scholar
  35. 35.
    Bohnen H-W, Cornils B (2002) Adv Catal 47:1–64Google Scholar
  36. 36.
    van Leeuwen PWNM, Claver C (2000) Rhodium catalyzed hydroformylation. Kluwer Academic, DordrechtGoogle Scholar
  37. 37.
    Ungváry F (2007) Coord Chem Rev 251:2072–2086Google Scholar
  38. 38.
    Ungváry F (2007) Coord Chem Rev 251:2087–2102Google Scholar
  39. 39.
    Ungváry F (2004) Coord Chem Rev 248:867–880Google Scholar
  40. 40.
    Ungváry F (2003) Coord Chem Rev 241:295–312Google Scholar
  41. 41.
    Ungváry F (2002) Coord Chem Rev 228:61–82Google Scholar
  42. 42.
    Goh SK, Marynick DS (2002) Organometallics 21:2262–2267Google Scholar
  43. 43.
    Gleich D, Hutter J (2004) Chem Eur J 10:2435–2444Google Scholar
  44. 44.
    Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Chem Rev 100:39–92Google Scholar
  45. 45.
    Tillack A, Jiao H, Castro IG, Hartung CG, Beller M (2004) Chem Eur J 10:2409–2420Google Scholar
  46. 46.
    Heck RF, Breslow DS (1961) J Am Chem Soc 83:4023–4027Google Scholar
  47. 47.
    Dombeck D (1983) Adv Catal 32:325–416Google Scholar
  48. 48.
    Whyman R (1974) J Organomet Chem 66:C23–C25Google Scholar
  49. 49.
    Mirbach MF (1984) J Organomet Chem 265:205–213Google Scholar
  50. 50.
    Pino P, Major A, Spindler F, Tannenbaum R, Bor G, Horváth IT (1991) J Organomet Chem 417:65–76Google Scholar
  51. 51.
    Ziegler T, Versluis L (1992) Adv Chem Ser 230:75–93Google Scholar
  52. 52.
    Ziegler T, Cavallo L, Bérces A (1993) Organometallics 12:3586–3593Google Scholar
  53. 53.
    Huo C-F, Li Y-W, Wu G-S, Beller M, Jiao H (2002) J Phys Chem A 106:12161–12169Google Scholar
  54. 54.
    Grima JPh, Choplin F, Kaufmann G (1977) J Organomet Chem 129:221–237Google Scholar
  55. 55.
    Huo C-F, Li Y-W, Beller M, Jiao H (2003) Organometallics 22:4665–4677Google Scholar
  56. 56.
    Versluis L, Ziegler T (1990) Organometallics 9:2985–2992Google Scholar
  57. 57.
    Solà M, Ziegler T (1996) Organometallics 15:2611–2618Google Scholar
  58. 58.
    Klaus S, Neumann H, Jiao H, Jacobi von Wangelin A, Gördes D, Strübing D, Hübner S, Hateley M, Weckbecker C, Riermeier T, Beller M (2004) J Organomet Chem 689:3685–3700Google Scholar
  59. 59.
    Adkins H, Williams JR (1952) J Org Chem 17:980–987Google Scholar
  60. 60.
    BASF (Kummer, R.) (1974) German Patent (OLS) 24,14,253Google Scholar
  61. 61.
    Fell B, Rupilius W (1969) Tetrahedron Lett 10:2721–2723Google Scholar
  62. 62.
    Fell B, Bahrmann H (1977) J Mol Catal 2:211–218Google Scholar
  63. 63.
    Bahrmann H, Fell B (1980) J Mol Catal 8:329–337Google Scholar
  64. 64.
    van Leeuwen PWNM, Roobeek CF (1985) J Mol Catal 31:345–353Google Scholar
  65. 65.
    Botteghi C, Branca M, Saba A (1980) J Organomet Chem 184:C17–C19Google Scholar
  66. 66.
    Wilkinson G, Brown CK, Mowat W, Yagupsky G (1971) J Chem Soc A 850–859Google Scholar
  67. 67.
    Botteghi C, Salomon Ch (1974) Tetrahedron Lett 15:4285–4288Google Scholar
  68. 68.
    Bertozzi S, Campigli N, Vitulli G, Lazzaroni R, Salvadori P (1995) J Organomet Chem 487:41–45Google Scholar
  69. 69.
    Horiuchi T, Ohta T, Shirakawa E, Nozaki K, Takaya H (1997) Tetrahedron 53:7795–7804Google Scholar
  70. 70.
    Kummer R, Weiss FJ (1978) Symp Rhodium Homogeneous Catal 87Google Scholar
  71. 71.
    Packett DL (1993) European Patent Application EP 577,042Google Scholar
  72. 72.
    Packett DL (1994) Chem Abstr 120:298075jGoogle Scholar
  73. 73.
    DL Packett (1994) US Patent 5,312,996, 1994Google Scholar
  74. 74.
    Packett DL (1995) Chem Abstr 123:82828wGoogle Scholar
  75. 75.
    Ohgomori Y, Suzuki N, Sumitani N (1998) J Mol Catal A 133:289–291Google Scholar
  76. 76.
    Mirbach MF (1984) Transition Metal Chem 9:465–468Google Scholar
  77. 77.
    Tuba R, Mika LT, Bodor A, Pusztai Z, Tόth I, Horváth IT (2003) Organometallics 22:1582–1584Google Scholar
  78. 78.
    Huo C-F, Li Y-W, Beller M, Jiao H (2005) Organometallics 24:3634–3643Google Scholar
  79. 79.
    Natta G, Pino P (1951) The 12th international congress of pure and applied chemistry, New York, September 1951Google Scholar
  80. 80.
    Greenfield H, Wotiz JH, Wender I (1957) J Org Chem 22:542–546Google Scholar
  81. 81.
    Fell B, Beutler M (1972) Tetrahedron Lett 13:3455–3456Google Scholar
  82. 82.
    Doyama K, Joh T, Shiohara T, Takahashi S (1988) Bull Chem Soc Jpn 61:4353–4360Google Scholar
  83. 83.
    Wuts PGM, Ritter AR (1989) J Org Chem 54:5180–5182Google Scholar
  84. 84.
    Campi EM, Jackson WR, Nilsson Y (1991) Tetrahedron Lett 32:1093–1094Google Scholar
  85. 85.
    Nombel P, Lugan N, Mulla F, Lavigne G (1994) Organometallics 13:4673–4675Google Scholar
  86. 86.
    Johnson JR, Cuny GD, Buchwald SL (1995) Angew Chem Int Ed Engl 34:1760–1761Google Scholar
  87. 87.
    Ishii Y, Miyashita K, Kamita K, Hidai M (1997) J Am Chem Soc 119:6448–6449Google Scholar
  88. 88.
    Van den Hoven BG, Alper H (1999) J Org Chem 64:3964–3968Google Scholar
  89. 89.
    Van den Hoven BG, Alper H (1999) J Org Chem 64:9640–9645Google Scholar
  90. 90.
    Zimmer R, Dinesh CU, Nandanan E, Khan FA (2000) Chem Rev 100:3067–3125Google Scholar
  91. 91.
    Fell B, Beutler M (1976) Erdöl & Kohle, Erdgas, Petrochemie 29:149–153Google Scholar
  92. 92.
    Huo C-F, Li Y-W, Beller M, Jiao H (2004) Organometallics 23:765–773Google Scholar
  93. 93.
    Huo C-F, Li Y-W, Beller M, Jiao H (2005) Chem Eur J 11:889–902Google Scholar
  94. 94.
    Huo C-F, Li Y-W, Beller M, Jiao H (2004) Organometallics 23:2168–2178Google Scholar
  95. 95.
    Hong F-E, Tsai Y-T, Chang Y-C, Ko B-T (2001) Inorg Chem 40:5487–5488Google Scholar
  96. 96.
    Hong F-E, Chang Y-C (2004) Organometallics 23:718–729Google Scholar
  97. 97.
    Mond L, Hirtz H, Cowap DM (1908) Chem News 98:165Google Scholar
  98. 98.
    Noack K (1963) Spectrochim Acta 19:1925Google Scholar
  99. 99.
    Bor G (1963) Spectrochim Acta 19:2065Google Scholar
  100. 100.
    Noack K (1964) Helv Chim Acta 47:1064Google Scholar
  101. 101.
    Bor G, Noack K (1974) J Organomet Chem 64:367–372Google Scholar
  102. 102.
    Bor G, Dietler UK, Noack K (1976) J Chem Soc, Chem Commun 914Google Scholar
  103. 103.
    Sweany RL, Brown TL (1977) Inorg Chem 16:415–421Google Scholar
  104. 104.
    Onaka S, Shriver DF (1976) Inorg Chem 15:915–918Google Scholar
  105. 105.
    Aullón G, Alvarez S (2001) Eur J Inorg Chem 3031–3038Google Scholar
  106. 106.
    Folga E, Ziegler T (1993) J Am Chem Soc 113:5169–5176Google Scholar
  107. 107.
    Sumner GG, Klug HP, Alexander LE (1964) Acta Crystallogr 17:732Google Scholar
  108. 108.
    Leung P, Coppens P (1983) Acta Crystallogr, Sect B 39:535Google Scholar
  109. 109.
    Aullón G, Alvarez S (2001) Organometallics 20:818–826Google Scholar
  110. 110.
    Barckholtz TA, Bursten BE (1998) J Am Chem Soc 120:1926–1927Google Scholar
  111. 111.
    Macchi P, Garlaschelli L, Martinengo S, Sironi A (1998) Inorg Chem 37:6263–6268Google Scholar
  112. 112.
    Jones RA, Seeberger MH, Stuart AL, Whittlesey BR, Wright TC (1986) Acta Crystallogr, Sect C 42:399Google Scholar
  113. 113.
    Hanson BE, Sullivan MJ, Davis RJ (1984) J Am Chem Soc 106:251–253Google Scholar
  114. 114.
    Hieber W, Mühlbauer F, Ehman EA (1932) Chem Ber 65:1090Google Scholar
  115. 115.
    Corradini P (1959) J Chem Phys 31:1676Google Scholar
  116. 116.
    Wei CH, Dahl LF (1966) J Am Chem Soc 88:1821–1822Google Scholar
  117. 117.
    Xie Y, King RB, Schaefer HF III (2005) Spectrochim Acta Part A 61:1693–1699Google Scholar
  118. 118.
    Hieber W, Lagally H (1943) Z Anorg, Allgem Chem 251:96Google Scholar
  119. 119.
    Wei CH, Wilkes GR, Dahl LF (1967) J Am Chem Soc 89:4792–4793Google Scholar
  120. 120.
    Wei CH (1969) Inorg Chem 8:2384–2397Google Scholar
  121. 121.
    Corey ER, Dahl LF, Beck W (1963) J Am Chem Soc 85:1202–1203Google Scholar
  122. 122.
    Chini P (1967) Chem Commun 440Google Scholar
  123. 123.
    Albano V, Chini P, Scatturin V (1968) Chem Commun 163Google Scholar
  124. 124.
    Braye EH, Dahl LF, Hübel W, Wampler DL (1962) J Am Chem Soc 84:4633–4639Google Scholar
  125. 125.
    Albano VG, Braga D, Martinengo S (1986) J Chem Soc, Dalton Trans 981Google Scholar
  126. 126.
    Martinengo S, Strumolo D, Chini P, Albano VG, Braga D (1985) J Chem Soc, Dalton Trans 35Google Scholar
  127. 127.
    Zhao J, Xu J, King RB (2008) Inorg Chem 47:9314–9320Google Scholar
  128. 128.
    Geis O, Schmalz HG (1998) Angew Chem Int Ed 37:911–914Google Scholar
  129. 129.
    Jeong N (1998) Trans Met Org Synth 1:560–577Google Scholar
  130. 130.
    Chung YK (1999) Coord Chem Rev 188:297–341Google Scholar
  131. 131.
    Khand IU, Knox GR, Pauson PL, Watts WE, Foreman MI (1973) J Chem Soc, Perkin Trans 1:977–981Google Scholar
  132. 132.
    Shambayti S, Crowe WE, Schreiber SL (1990) Tetrahedron Lett 31:5289–5292Google Scholar
  133. 133.
    Jeong N, Chung YK, Lee BY, Lee SH, Yoo S-E (1991) Synlett 204–206Google Scholar
  134. 134.
    Magnus PC, Exon C, Albaugh-Robertson P (1985) Tetrahedron 41:5861–5869Google Scholar
  135. 135.
    Magnus PC, Principe LM (1985) Tetrahedron Lett 26:4851–4854Google Scholar
  136. 136.
    Brusey SA, Banide EV, Dörrich S, O’Donohue P, Ortin Y, Müller-Bunz H, Long C, Evans P, McGlinchey MJ (2009) Organometallics 28:6308–6319Google Scholar
  137. 137.
    Vázquez J (1999) Ph. D. Thesis, University of BarcelonaGoogle Scholar
  138. 138.
    Yamanaka M, Nakamura E (2001) J Am Chem Soc 123:1703–1708Google Scholar
  139. 139.
    Pericàs MA, Balsells J, Castro J, Marchueta I, Moyano A, Riera A, Vázquez J, Verdaguer X (2002) Pure Appl Chem 74:167–174Google Scholar
  140. 140.
    Robert F, Milet A, Gimbert Y, Konya D, Greene AE (2001) J Am Chem Soc 123:5396–5400Google Scholar
  141. 141.
    Bladon P, Pauson PL, Brunner H, Eder J (1988) J Organomet Chem 353:449–454Google Scholar
  142. 142.
    Derdau V, Laschat S, Dix I, Jones PG (1999) Organometallics 18:3859–3864Google Scholar
  143. 143.
    Krafft ME, Romero RH, Scott IL (1995) Synlett 677–678Google Scholar
  144. 144.
    Krafft ME, Romero RH, Scott IL (1992) J Org Chem 57:5277–5278Google Scholar
  145. 145.
    Fonquerna S, Moyano A, Pericàs MA, Riera A (1995) Tetrahedron 51:4239–4254Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanPeople’s Republic of China
  2. 2.Leibniz-Institut für Katalyse e.V. an der Universität RostockRostockGermany

Personalised recommendations