Advertisement

Reactivity of Metal Carbene Clusters PtnCH2+ and PtMCH2+ (M = Cu, Ag, Au, Pt, Rh) Toward O2 and NH3: A Computational Study

  • Zexing Cao
Chapter

Abstract

DFT calculations at various levels have been used to elucidate the mechanistic details of dehydrogenation of methane by Pt cationic clusters and the reactivity of metal carbene clusters Pt4CH 2 + and PtMCH 2 + (M = Cu, Ag, Au, Pt, Rh) toward O2 and NH3. On the basis of theoretical analyses, the size dependence of reactivity and the cooperative effect of the bimetallic cluster in the dehydrogenation reactions of CH4 and NH3 have been discussed. Plausible mechanisms for the reactions of Pt4CH 2 + with O2 and PtMCH 2 + with NH3, leading to C–O and C–N bond couplings, respectively, have been proposed. The calculated results show good agreement with the experimental observations and provide a reasonable basis for understanding of the gas-phase chemistry of bare Pt-containing cationic clusters and their organometallic systems.

Keywords

Potential Energy Surface Bond Activation Dehydrogenation Reaction Quartet State Bimetallic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Zexing Cao thanks his students and collaborators as cited in the references for their key contributions to this research. This work was supported by the National Science Foundation of China (20673087, 20733002, 20873105) and the Ministry of Science and Technology (2011CB808504).

References

  1. 1.
    Lunsford JH (1995) Angew Chem Int Ed 43:970Google Scholar
  2. 2.
    Crabtree RH (1995) Chem Rev 95:987–1007Google Scholar
  3. 3.
    Schwarz H, Schroder D (2000) Pure Appl Chem 72(12):2319–2332Google Scholar
  4. 4.
    Martinho Simoes JA, Beauchamp JL (1990) Chem Rev 90:629Google Scholar
  5. 5.
    Weisshaar JC (1993) Acc Chem Res 26:213Google Scholar
  6. 6.
    Lersch M, Tilset M (2005) Chem Rev 105:2471Google Scholar
  7. 7.
    Achatz U, Berg C, Joos S, Fox BS, Beyer MK, Niedner-Schatteburg G, Bondybey VE (2000) Chem Phys Lett 320(1–2):53–58Google Scholar
  8. 8.
    Achatz U, Beyer M, Joos S, Fox BS, Niedner-Schatteburg G, Bondybey VE (1999) J Phys Chem A 103(41):8200–8206Google Scholar
  9. 9.
    Adhart C, Uggerud E (2006) Int J Mass Spectrom 249:191–198Google Scholar
  10. 10.
    Armentrout PB (2006) J Phys Chem A 110(27):8327–8338Google Scholar
  11. 11.
    Armentrout PB (2007) Organometallics 26(23):5486–5500Google Scholar
  12. 12.
    Armentrout PB, Shin S, Liyanage R (2006) J Phys Chem A 110(4):1242–1260Google Scholar
  13. 13.
    Armentrout PB, Sievers MR (2003) J Phys Chem A 107(22):4396–4406Google Scholar
  14. 14.
    Aschi M, Bronstrup M, Diefenbach M, Harvey JN, Schroder D, Schwarz H (1998) Angew Chem Int Ed 37(6):829–832Google Scholar
  15. 15.
    Bronstrup M, Schroder D, Schwarz H (1999) Organometallics 18(10):1939–1948Google Scholar
  16. 16.
    Koszinowski K, Schlangen M, Schroder D, Schwarz H (2004) Int J Mass Spectrom 237(1):19–23Google Scholar
  17. 17.
    Koszinowski K, Schroder D, Schwarz H (2003) J Am Chem Soc 125(13):3676–3677Google Scholar
  18. 18.
    Koszinowski K, Schroder D, Schwarz H (2004) Angew Chem Int Ed 43(1):121–124Google Scholar
  19. 19.
    Oncak M, Cao Y, Beyer MK, Zahradnik R, Schwarz H (2008) Chem Phys Lett 450(4–6):268–273Google Scholar
  20. 20.
    Schlangen M, Schroder D, Schwarz H (2007) Angew Chem Int Ed 46(10):1641–1644Google Scholar
  21. 21.
    Schlangen M, Schwarz H (2009) Dalton Trans 46:10155–10165Google Scholar
  22. 22.
    Schroder D, Schwarz H (2005) Can J Chem Revue Canadienne De Chimie 83(11):1936–1940Google Scholar
  23. 23.
    Schwarz H (2003) Angew Chem Int Ed 42(37):4442–4454Google Scholar
  24. 24.
    Almeida HJ, Duarte HA (2009) Organometallics 28:3203–3211Google Scholar
  25. 25.
    Di Santo E, Michelini MC, Russo N (2009) J Phys Chem A 113(52):14699–14705Google Scholar
  26. 26.
    Di Santo E, Michelini MD, Russo N (2009) Organometallics 28(13):3716–3726Google Scholar
  27. 27.
    Hanmura T, Ichihashi M, Kondow T (2002) J Phys Chem A 106(47):11465–11469Google Scholar
  28. 28.
    Hinrichs RZ, Willis PA, Stauffer HU, Schroden JJ, Davis HF (2000) J Chem Phys 112(10):4634–4643Google Scholar
  29. 29.
    Kummerlowe G, Balteanu I, Sun Z, Balaj OP, Bondybey VE, Beyer MK (2006) Int J Mass Spectrom 254(3):183–188Google Scholar
  30. 30.
    Lang SM, Bernhardt TM, Barnett RN, Landman U (2010) Angew Chem Int Ed 49(5):980–983Google Scholar
  31. 31.
    Li JH, Xia WS, Wan HL (2006) Chem J Chin Univ 27(12):2357–2361, in ChineseGoogle Scholar
  32. 32.
    Liu F, Zhang XG, Armentrout PB (2005) Phys Chem Chem Phys 7(5):1054–1064Google Scholar
  33. 33.
    Li FX, Armentrout PB (2006) J Chem Phys 125(13):133114Google Scholar
  34. 34.
    Michelini MC, Rivalta I, Sicilia E (2008) Theor Chem Acc 120(4–6):395–403Google Scholar
  35. 35.
    Michelini MD, Sicilia E, Russo N, Alikhani ME, Silvi B (2003) J Phys Chem A 107(24):4862–4868Google Scholar
  36. 36.
    Parke LG, Hinton CS, Armentrout PB (2006) Int J Mass Spectrom 254(3):168–182Google Scholar
  37. 37.
    Parke LG, Hinton CS, Armentrout PB (2007) J Phys Chem C 111(48):17773–17787Google Scholar
  38. 38.
    Parke LG, Hinton CS, Armentrout PB (2008) J Phys Chem A 112(42):10469–10480Google Scholar
  39. 39.
    Russo N, Sicilia E (2001) J Am Chem Soc 123(11):2588–2596Google Scholar
  40. 40.
    Sandig N, Koch W (1997) Organometallics 16(24):5244–5251Google Scholar
  41. 41.
    Schroder D (2010) Angew Chem Int Ed 49(5):850–851Google Scholar
  42. 42.
    Shayesteh A, Lavrov VV, Koyanagi GK, Bohme DK (2009) J Phys Chem A 113(19):5602–5611Google Scholar
  43. 43.
    Sicilia E, Russo N (2002) J Am Chem Soc 124(7):1471–1480Google Scholar
  44. 44.
    Sievers MR, Chen YM, Haynes CL, Armentrout PB (2000) Int J Mass Spectrom 195:149–170Google Scholar
  45. 45.
    Simon A, MacAleese L, Boissel P, Maitre P (2002) Int J Mass Spectrom 219(3):457–473Google Scholar
  46. 46.
    van Koppen PAM, Perry JK, Kemper PR, Bushnell JE, Bowers MT (1999) Int J Mass Spectrom 187:989–1001Google Scholar
  47. 47.
    Zhang GB, Li SH, Jiang YS (2003) Organometallics 22(19):3820–3830Google Scholar
  48. 48.
    Zhang Q, Kemper PR, Bowers MT (2001) Int J Mass Spectrom 210(1–3):265–281Google Scholar
  49. 49.
    Zhang Q, Kemper PR, Shin SK, Bowers MT (2001) Int J Mass Spectrom 204(1–3):281–294Google Scholar
  50. 50.
    Zhang XG, Liyanage R, Armentrout PB (2001) J Am Chem Soc 123(23):5563–5575Google Scholar
  51. 51.
    Zhang XH, Schwarz H (2009) Chemistry 15(43):11559–11565Google Scholar
  52. 52.
    Bauschlicher CW, Partridge H, Scuseria GE (1992) J Chem Phys 97:7471Google Scholar
  53. 53.
    Armentrout MM, Li FX, Armentrout PB (2004) J Phys Chem A 108:9660–9672Google Scholar
  54. 54.
    Westerberg J, Blomberg MRA (1998) J Phys Chem A 102:7303–7307Google Scholar
  55. 55.
    Husband J, Aguirre F, Thompson CJ, Laperle CM, Metz RB (2000) J Phys Chem A 104:2020–2024Google Scholar
  56. 56.
    Perry JK, Ohanessian G, Goddard WA (1994) Organometallics 13:1870–1877Google Scholar
  57. 57.
    Santo ED, Michelini MC, Russo N (2009) Organometallics 28:3716–3726Google Scholar
  58. 58.
    Schwarz H (1991) Angew Chem Int Ed 30:820Google Scholar
  59. 59.
    Eller K, Schwarz H (1991) Chem Rev 91:1121Google Scholar
  60. 60.
    Chen J, Xia F, Cao ZX, Lin MH (2007) J Mol Struct (Theochem) 808(1–3):9–16Google Scholar
  61. 61.
    Xia F, Cao ZX (2006) J Phys Chem A 110(33):10078–10083Google Scholar
  62. 62.
    Xia F, Cao ZX (2007) Organometallics 26(25):6076–6081Google Scholar
  63. 63.
    Xia F, Chen J, Cao ZX (2006) Chem Phys Lett 418(4–6):386–391Google Scholar
  64. 64.
    Xia F, Chen J, Zeng K, Cao ZX (2005) Organometallics 24(8):1845–1851Google Scholar
  65. 65.
    de Macedo LGM, Pyykko P (2008) Chem Phys Lett 462(1–3):138–143Google Scholar
  66. 66.
    Diefenbach M, Bronstrup M, Aschi M, Schroder D, Schwarz H (1999) J Am Chem Soc 121(45):10614–10625Google Scholar
  67. 67.
    Koszinowski K, Schroder D, Schwarz H (2003) Organometallics 22(19):3809–3819Google Scholar
  68. 68.
    Koszinowski K, Schroder D, Schwarz H (2003) Chemphyschem 4(11):1233–1237Google Scholar
  69. 69.
    Koszinowski K, Schroder D, Schwarz H (2003) J Phys Chem A 107(25):4999–5006Google Scholar
  70. 70.
    Koszinowski K, Schroder D, Schwarz H (2004) Organometallics 23(5):1132–1139Google Scholar
  71. 71.
    Xiao L, Wang LC (2007) J Phys Chem B 111(7):1657–1663Google Scholar
  72. 72.
    Heinemann C, Hertwig RH, Wesendrup R, Koch W, Schwarz H (1995) J Am Chem Soc 117:495–500Google Scholar
  73. 73.
    Pavlov M, Blomberg MRA, Siegbahm PEM, Wesendrup R, Heinemann C, Schwarz H (1997) J Phys Chem A 101:1567–1579Google Scholar
  74. 74.
    Trevor DJ, Cox DM, Kaldor A (1990) J Am Chem Soc 112:3742Google Scholar
  75. 75.
    Kaldor DA, Cox DM (1990) Pure Appl Chem 62:79Google Scholar
  76. 76.
    Carroll JJ, Weisshaar JC (1995) J Chem Phys 99:14388Google Scholar
  77. 77.
    Cui Q, Musaev DG, Morokuma K (1998) J Chem Phys 180:8418Google Scholar
  78. 78.
    Cui Q, Musaev DG, Morokuma K (1998) J Phys Chem A 102:6373Google Scholar
  79. 79.
    Dalmazio I, Duarte HA (2001) J Chem Phys 115:1747Google Scholar
  80. 80.
    Villaume S, Strich A, Ndoye CA, Daniel C, Perera SA, Bartlett RJ (2007) J Chem Phys 126:154318Google Scholar
  81. 81.
    Chiodo S, Rivalta I, Michelini MC, Russo N, Sicilia E, Ugalde JM (2006) J Phys Chem A 110:12501–12511Google Scholar
  82. 82.
    Ogliaro F, Loades SD, Cooper DL, Karadakov PB (2000) J Phys Chem A 104:7091–7098Google Scholar
  83. 83.
    Irikura KK, Beauchamp JL (1991) J Am Chem Soc 113:2769Google Scholar
  84. 84.
    Irikura KK, Beauchamp JL (1991) J Phys Chem 95:8344Google Scholar
  85. 85.
    Irikura KK, Goddard WA (1994) J Am Chem Soc 116:8733–8740Google Scholar
  86. 86.
    Taylor WS, Campbell AS, Barnas DF, Babcock LM, Linder CB (1997) J Phys Chem A 101:2654Google Scholar
  87. 87.
    Heinemann C, Wesendrup R, Schwarz H (1995) Chem Phys Lett 239:75Google Scholar
  88. 88.
    Wesendrup R, Schroder D, Schwarz H (1994) Angew Chem Int Ed 33:1174Google Scholar
  89. 89.
    Magnera TF, David DE, Michl J (1987) J Am Chem Soc 109:936Google Scholar
  90. 90.
    Jackson GS, White FM, Hammill CL, Clark RJ, Marshall AG (1997) J Am Chem Soc 119:7567Google Scholar
  91. 91.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  92. 92.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  93. 93.
    Becke AD (1998) Phys Rev A 38:3098Google Scholar
  94. 94.
    Perdew JP, Chevary JA, Vosko S, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671Google Scholar
  95. 95.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 98, Revision A. 11, Gaussian, Inc., Pittsburgh PAGoogle Scholar
  96. 96.
    Amsterdam Density Functional (ADF) (2004) SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, Netherlands (www.scm.com)
  97. 97.
    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41Google Scholar
  98. 98.
    Boerrigter PM, te Velde G, Baerends EJ (1988) J Int Quantum Chem 33:87Google Scholar
  99. 99.
    Te Velde G, Baerends EJ (1992) J Chem Phys 99:84Google Scholar
  100. 100.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270Google Scholar
  101. 101.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299Google Scholar
  102. 102.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284Google Scholar
  103. 103.
    Ehlers AW, Bohme M, Sapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Grenking G (1993) Chem Phys Lett 208:111Google Scholar
  104. 104.
    Dai D, Balasubramanian K (1994) J Chem Phys 100:4401Google Scholar
  105. 105.
    Cui Q, Djamaladdin G, Morokuma K (1998) J Chem Phys 108:8414Google Scholar
  106. 106.
    Lenthe EV, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597Google Scholar
  107. 107.
    Lenthe EV, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783Google Scholar
  108. 108.
    Minori A, Sayaka M, Takahito N, Kimihiko H (2005) Chem Phys 311:129Google Scholar
  109. 109.
    Spain EM, Morse MD (1992) J Chem Phys 97:4605Google Scholar
  110. 110.
    Perdew JP (1986) Phys Rev B 33:8822Google Scholar
  111. 111.
    Airola MB, Morse MD (2002) J Chem Phys 116:1313Google Scholar
  112. 112.
    Taylor S, Lemire GW, Hamrick Y, Fu ZW, Morse MD (1988) J Chem Phys 89:5517Google Scholar
  113. 113.
    Bishea GA, Marak N, Morse MD (1991) J Chem Phys 95:5618Google Scholar
  114. 114.
    Bishea GA, Morse MD (1990) Chem Phys Lett 171:430Google Scholar
  115. 115.
    Balasubramanian K (1987) J Chem Phys 87:6573Google Scholar
  116. 116.
    Wang H, Carter EA (1992) J Phys Chem 96:1197Google Scholar
  117. 117.
    Dediu A (2000) Chem Res 100:543Google Scholar
  118. 118.
    Yanagisawa S, Tsuneda T, Hirao K (2001) J Comput Chem 22:1995Google Scholar
  119. 119.
    Fortunelli A (1999) J Mol Struct (Theochem) 493:233Google Scholar
  120. 120.
    Schwarz H (2004) Int J Mass Spectrom 237:75Google Scholar
  121. 121.
    Basch H, Musaev DG, Morokuma K (2002) J Mol Struct (Theochem) 586:35Google Scholar
  122. 122.
    Harada M, Dexpert H (1996) J Chem Phys 100:565Google Scholar
  123. 123.
    Yuan D, Wang Y, Zeng Z (2005) J Chem Phys 122:114310Google Scholar
  124. 124.
    Ranasinghe YA, MacMahou TJ, Freiser BS (1991) J Phys Chem 95:7721Google Scholar
  125. 125.
    Fukui K (1970) J Phys Chem 74:4161Google Scholar
  126. 126.
    Fukui K (1981) Acc Chem Res 14:363Google Scholar
  127. 127.
    Dewar MJS (1951) Bull Soc Chem Fr 18:C71Google Scholar
  128. 128.
    Chatt J, Duncanson LA (1953) J Am Chem Soc 2939Google Scholar
  129. 129.
    Schroder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139Google Scholar
  130. 130.
    Shaik S, Danovich D, Fiedler A, Schröder D, Schwarz H (1995) Helv Chim Acta 78:1393Google Scholar
  131. 131.
    Danovich D, Shaik S (1997) J Am Chem Soc 119:1773Google Scholar
  132. 132.
    Litorija M, Ruscic B (1997) J Chem Phys 107:9852Google Scholar
  133. 133.
    Wittborn C, Wahlgren U (1995) Chem Phys 201:357Google Scholar
  134. 134.
    Yoshizawa K, Shiota Y, Yamabe T (1999) J Chem Phys 111:538Google Scholar
  135. 135.
    Yoshizawa K, Kagawa Y (2000) J Phys Chem A 104:9347Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Personalised recommendations