Advertisement

Mechanistic Insights into Selective Oxidation of Light Alkanes by Transition Metal Compounds/Complexes

  • Gang Fu
  • Xin Xu
Chapter

Abstract

Selective oxidation or oxidative functionalization of light alkanes by using transition metal compounds/complexes is an area of active research, whose progress is of great importance for both academic researches and industrial applications. In this work, we have reviewed some of our recent theoretical advances on selective oxidation of alkanes upon metal-oxo species as well as Pt(II) complexes. Attention has been paid to two key topics: (1) the mechanisms of the selective oxidation of methane and propane, and (2) the structure, stability, and reaction mechanisms of the Catalytica PtCl2(bpym) catalyst. Compared to the related experimental results, rich mechanistic information has been obtained. These findings would be of help to the rational design of more efficient heterogeneous and homogeneous catalysts for utilization of light alkanes.

Keywords

Selective Oxidation Oxidative Dehydrogenation Light Alkane Bond Activation Dissociative Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BE

Bond energy

bpym

η2-2,2′-bipyrimidyl

DFT

Density functional theory

DHAM

Dehydrogenation–aromatization of methane

EA

Electron affinity

EPR

Electron paramagnetic resonance

GTL

Gas-to-liquid process

HOMO

Highest occupied molecular orbital

KIE

Kinetic isotopic effect

LUMO

Lowest unoccupied molecular orbital

MPO

Methane partial oxidation to oxygenate

NNC

η3-6-phenyl-2,2′-bipyridine

ODHP

Oxidative dehydrogenation of propane

PA

Proton affinity

PES

Potential energy surface

Pic

η2-N,O-picolinate

QM/MM

Quantum mechanics/molecular mechanics

QM-RP

Quantum mechanical rapid prototyping

SS-VAFR

Single-site vanadyl activation, functionalization, and reoxidation

TFA

Trifluoroacetic acid

TOF

Turnover frequency

UV–Vis

Ultraviolet visible

References

  1. 1.
    Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL (2001) Fuel Proc Tech 71:139Google Scholar
  2. 2.
    Vosloo AC (2001) Fuel Proc Tech 71:149Google Scholar
  3. 3.
    Crabtree RH (2001) J Chem Soc Dalton Trans 17:2437Google Scholar
  4. 4.
    Arakawa H, Aresta M, Armor JN (2001) Chem Rev 101:953Google Scholar
  5. 5.
    Labinger JA, Bercaw JE (2002) Nature 417:507Google Scholar
  6. 6.
    Fokin AA, Schreiner PR (2002) Chem Rev 102:1551Google Scholar
  7. 7.
    Vision 2020 Catalysis Report, 1997Google Scholar
  8. 8.
    Casey CP (2004) 5th International Conference on Chemistry and Chemical Engineering, Cuba, 2004Google Scholar
  9. 9.
    Crabtree RH (2010) Chem Rev 110:575Google Scholar
  10. 10.
    Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI (2009) J Chem Soc Dalton Trans 30:5820Google Scholar
  11. 11.
    Shilov AE, Shul’pin GB (1997) Chem Rev 97:2879Google Scholar
  12. 12.
    Stahl SS, Labinger JA, Bercaw JE (1998) Angew Chem Int Ed 37:2180Google Scholar
  13. 13.
    Periana RA, Bhalla G, Tenn WJ III, Young KJH, Liu XY, Mironov O, Jones CJ, Ziatdinov VR (2004) J Mol Catal A Chem 220:7Google Scholar
  14. 14.
    Labinger JA (2004) J Mol Catal A Chem 220:27Google Scholar
  15. 15.
    Bergman RG (2007) Nature 446:391Google Scholar
  16. 16.
    Copéret C (2010) Chem Rev 110:656Google Scholar
  17. 17.
    Balcells D, Clot E, Eisenstein O (2010) Chem Rev 110:749Google Scholar
  18. 18.
    Webster CE, Fan Y, Hall MB, Kunz D, Hartwig JF (2003) J Am Chem Soc 125:858Google Scholar
  19. 19.
    Lam WH, Lin Z (2003) Organometallics 22:473Google Scholar
  20. 20.
    Oxgaard J, Muller RP, Goddard WA III, Periana RA (2004) J Am Chem Soc 126:352Google Scholar
  21. 21.
    Perutz RN, Sabo-Etienne S (2007) Angew Chem Int Ed 46:2578Google Scholar
  22. 22.
    Lin Z (2007) Coord Chem Rev 251:2280Google Scholar
  23. 23.
    Vastine BA, Hall MB (2009) Coord Chem Rev 253:1202Google Scholar
  24. 24.
    Grasselli RK, Burrington JD, Buttrey DJ (2003) Top Catal 23:5Google Scholar
  25. 25.
    Gol’dshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Zh Fiz Khim 43:2174Google Scholar
  26. 26.
    Gol’dshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Russ J Phys Chem 43:1222 (english translation)Google Scholar
  27. 27.
    Periana RA, Taube DJ, Gamble S, Taube H, Satoh T, Fujii H (1998) Science 280:560Google Scholar
  28. 28.
    Periana RA (1993) Science 259:340Google Scholar
  29. 29.
    Jones CJ, Taube D, Ziatdinov VR, Periana RA, Nielsen RJ, Oxgaard J, Goddard WA III (2004) Angew Chem Int Ed 43:4626Google Scholar
  30. 30.
    Periana RA, Mironov O, Taube D, Bhalla G, Jones CJ (2003) Science 301:814Google Scholar
  31. 31.
    Waters T, O’Hair RAJ, Wedd AG (2003) J Am Chem Soc 125:3384Google Scholar
  32. 32.
    Fialko EF, Kikhtenko AV, Goncharov VB (1998) Organomettalics 17:25Google Scholar
  33. 33.
    Schroder D, Schwarz H (1995) Angew Chem Int Ed Engl 34:1973Google Scholar
  34. 34.
    Xie S, Chen K, Bell AT, Iglesia E (2000) J Phys Chem B 104:10059Google Scholar
  35. 35.
    Yang W, Wang X, Guo Q, Zhang Q, Wang Y (2003) New J Chem 27:1301Google Scholar
  36. 36.
    Hill CL, Prosser-McCartha CM (1995) Coord Chem Rev 143:407Google Scholar
  37. 37.
    Mayer JM (1998) Acc Chem Res 31:441 and references thereinGoogle Scholar
  38. 38.
    Limberg C (2003) Angew Chem Int Ed Engl 42:5932 and references thereinGoogle Scholar
  39. 39.
    Ortiz de Montellano PR (2010) Chem Rev 110:932Google Scholar
  40. 40.
    Xu YD, Bao XH, Lin LW (2003) J Catal 216:386Google Scholar
  41. 41.
    Xu Y, Lin L (1999) Appl Catal A 188:53Google Scholar
  42. 42.
    Shu J, Adnot A, Grandjean PA (1999) Ind Eng Chem Res 38:3860Google Scholar
  43. 43.
    Xu X, Faglioni F, Goddard WA III (2002) J Phys Chem A 106:7171Google Scholar
  44. 44.
    Gesser HD, Hunter NR, Prakash CB (1985) Chem Rev 85:235Google Scholar
  45. 45.
    Tabata K, Teng Y, Takemoto T, Suzuki E, Banares MA, Pena MA, Fierro JLG (2002) Catal Rev 44:1Google Scholar
  46. 46.
    Haber J (1997) Stud Surf Sci Catal 110:1Google Scholar
  47. 47.
    Fu G, Xu X, Lu X, Wan HL (2005) J Am Chem Soc 127:3989Google Scholar
  48. 48.
    Fu G, Xu X, Wan HL (2006) Catal Today 117:133Google Scholar
  49. 49.
    Busca G, Finocchio E, Lorenzelli V (1999) Catal Today 49:453Google Scholar
  50. 50.
    Kuba S, Heydorn PC, Grasselli RK (2001) Phys Chem Chem Phys 3:146Google Scholar
  51. 51.
    Zhen KJ, Khan MM, Mak CJ, Lewis KB, Somorjai GA (1985) J Catal 94:501Google Scholar
  52. 52.
    Spencer ND, Pereira CJ (1987) AIChE J 33:1808Google Scholar
  53. 53.
    Spencer ND, Pereira CJ, Grasselli RK (1990) J Catal 126:546Google Scholar
  54. 54.
    Sojka Z, Che M (1995) J Phys Chem 99:5418Google Scholar
  55. 55.
    Zhou D, Zhang Y, Zhu H, Ma D, Wang Y, Liu X, Bao X (2007) J Phys Chem C 111:2081Google Scholar
  56. 56.
    Sauer J, Schwarz H (2006) Angew Chem Int Ed 45:4681Google Scholar
  57. 57.
    Cheng MJ, Chenoweth K, Oxgaard J, van Duin A, Goddard WA (2007) J Phys Chem C 111:5115Google Scholar
  58. 58.
    Kung HH (1994) Adv Catal 40:1Google Scholar
  59. 59.
    Cavani F, Trifirò F (1995) Catal Today 24:307Google Scholar
  60. 60.
    Albonetti S, Cavani F, Trifirò F (1996) Catal Rev Sci Eng 38:413Google Scholar
  61. 61.
    Chen KD, Bell AT, Iglesia E (2000) J Phys Chem B 104:1292Google Scholar
  62. 62.
    Chen KD, Iglesia E, Bell AT (2001) J Phys Chem B 105:646Google Scholar
  63. 63.
    Fu G, Xu X, Lu X, Wan HL (2005) J Phys Chem B 109:6416Google Scholar
  64. 64.
    Fu G, Yi X, Huang C, Xu X, Weng W, Xia W, Wan HL (2007) Surf Rev Lett 14:645Google Scholar
  65. 65.
    Redfern PC, Zapol P, Sternberg M, Adiga SP, Zygmunt SA, Curtiss LA (2006) J Phys Chem B 110:8363Google Scholar
  66. 66.
    Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041Google Scholar
  67. 67.
    Fu H, Liu Z, Wang W, Fan K (2006) J Am Chem Soc 129:11114Google Scholar
  68. 68.
    Mars P, van Krevelen DW (1954) Chem Eng Sci Suppl 3:3Google Scholar
  69. 69.
    Fu G, Chen ZN, Xu X, Wan HL (2008) J Phys Chem A 112:717Google Scholar
  70. 70.
    Siegbahn PEM, Blomberg MRA, Crabtree RH (1997) Theor Chem Acc 97:289Google Scholar
  71. 71.
    Grasselli RK (2002) Top Catal 21:79Google Scholar
  72. 72.
    Grzybowska-Świerkosz B (2002) Top Catal 21:35Google Scholar
  73. 73.
    Chen K, Xie S, Bell AT, Iglesia E (2000) J Catal 195:244Google Scholar
  74. 74.
    Mayer JM (2004) Annu Rev Phys Chem 55:363Google Scholar
  75. 75.
    Cukier RI, Nocera DG (1998) Annu Rev Phys Chem 49:337Google Scholar
  76. 76.
    Shilov AE (1984) Activation of saturated hydrocarbons by transition metal complexes. Reidel, Dordrecht, The NetherlandsGoogle Scholar
  77. 77.
    Kua J, Xu X, Periana RA, Goddard WA III (2002) Organometallics 21:511Google Scholar
  78. 78.
    Xu X, Kua J, Periana RA, Goddard WA III (2003) Organometallics 22:2057Google Scholar
  79. 79.
    Ahlquist M, Periana RA, Goddard III WA (2009) Chem Commun 2373Google Scholar
  80. 80.
    Zhu H, Ziegler T (2006) J Organomet Chem 691:4486Google Scholar
  81. 81.
    Zhu H, Ziegler T (2007) Organometallics 26:2277Google Scholar
  82. 82.
    Henry PM (1980) Palladium catalyzed oxidation of hydrocarbons. Reidel, Dordrecht, NetherlandsGoogle Scholar
  83. 83.
    Xu X, Fu G, Goddard WA III, Periana RA (2004) Stud Surf Sci Catal 147:499Google Scholar
  84. 84.
    Conley BL, Tenn WJ III, Young KJH, Ganesh SK, Meier SK, Ziatdinov VR, Mironov O, Oxgaard J, Gonzales J, Goddard WA III, Periana RA (2006) J Mol Catal A Chem 251:8Google Scholar
  85. 85.
    Zhu H, Ziegler T (2008) Organometallics 27:1743Google Scholar
  86. 86.
    Zhu H, Ziegler T (2009) Organometallics 28:2773Google Scholar
  87. 87.
    Muller RP, Philipp DM, Goddard WA III (2003) Top Catal 23:81Google Scholar
  88. 88.
    Ziatdinov VR, Oxgaard J, Mironov OA, Young KJH, Goddard WA III, Periana RA (2006) J Am Chem Soc 128:7404Google Scholar
  89. 89.
    Young KJH, Oxgaard J, Ess DH, Meier SK, Stewart T, Goddard III WA, Periana RA (2009) Chem Commun 3270Google Scholar
  90. 90.
    Mylvaganam K, Bacskay GB, Hush NS (2000) J Am Chem Soc 122:2041Google Scholar
  91. 91.
    Mylvaganam K, Bacskay GB, Hush NS (1999) J Am Chem Soc 121:4633Google Scholar
  92. 92.
    Becke AD (1988) Phys Rev A 38:3098Google Scholar
  93. 93.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785Google Scholar
  94. 94.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  95. 95.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623Google Scholar
  96. 96.
    Zhang IY, Wu JM, Xu X (2010) Chem Commun 3057 and references thereinGoogle Scholar
  97. 97.
    Wu JM, Xu X (2007) J Chem Phys 127:214105Google Scholar
  98. 98.
    Wu JM, Xu X (2008) J Chem Phys 129:164103Google Scholar
  99. 99.
    Wu JM, Xu X (2009) J Comp Chem 30:1424Google Scholar
  100. 100.
    Wu JM, Zhang YI, Xu X (2010) Chem Phys Chem 11:2561Google Scholar
  101. 101.
    Delley B (2006) J Phys Chem A110:13632Google Scholar
  102. 102.
    Tirado-Rives J, Jorgensen WL (2008) J Chem Theory Comput 4:297Google Scholar
  103. 103.
    Winget P, Clark T (2004) J Comput Chem 25:725Google Scholar
  104. 104.
    Cioslowski J, Liu G, Piskorz P (1998) J Phys Chem A 102:9890Google Scholar
  105. 105.
    Friesner RA, Knoll EH, Cao Y (2006) J Chem Phys 125:124107Google Scholar
  106. 106.
    Duan XM, Song GL, Li ZH, Wang XJ, Chen GH, Fan KN (2004) J Chem Phys 121:7086Google Scholar
  107. 107.
    Hu L, Wang X, Wong L, Chen GH (2003) J Chem Phys 119:11501Google Scholar
  108. 108.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865Google Scholar
  109. 109.
    Adamo C, Barone V (1999) J Chem Phys 110:6158Google Scholar
  110. 110.
    Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401Google Scholar
  111. 111.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215Google Scholar
  112. 112.
    Mori-Sanchez P, Cohen AJ, Yang WT (2006) J Chem Phys 124:0911021Google Scholar
  113. 113.
    Grimme S (2006) J Chem Phys 124:034108Google Scholar
  114. 114.
    Xu X, Goddard WA III (2004) Proc Natl Acad Sci USA 101:2673Google Scholar
  115. 115.
    Xu X, Goddard WA III (2004) J Chem Phys 121:4068Google Scholar
  116. 116.
    Zhang Y, Xu X, Goddard WA III (2009) Proc Natl Acad Sci USA 106:4963Google Scholar
  117. 117.
    Zhang YI, Luo Y, Xu X (2010) J Chem Phys 132:194105Google Scholar
  118. 118.
    Zhang YI, Luo Y, Xu X (2010) J Chem Phys 133:104105Google Scholar
  119. 119.
    Guo WP, Wu AA, Xu X (2010) Chem Phys Lett 498:203Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemistry, State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry & Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.MOE laboratory for Computational Physical Science, Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations