Transition Metal-Catalyzed Hydrogenations

  • Aaron Forbes
  • Vincenzo Verdolino
  • Paul Helquist
  • Olaf Wiest
Chapter

Abstract

Computational methods are an indispensible tool for the study of metal-organic reaction mechanisms. A particularly fruitful area is that of transition metal-catalyzed hydrogenations, including enantioselective versions that are extensively used at both the laboratory and the industrial scale. This review covers computational studies of rhodium-, ruthenium-, and iridium-catalyzed hydrogenation of enamides, acrylamides, carbonyls, and unactivated olefins. The evolution of the mechanistic models and the relationship of the computational studies to experimental studies are discussed.

Keywords

Potential Energy Surface Hydrogen Transfer Oxidative Addition Hydride Transfer Reductive Elimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We gratefully acknowledge financial support of our work by the American Chemical Society Petroleum Research Fund (Grant PRF#47810-AC1), the National Science Foundation (NSF CHE0833220 and NSF CHE 1058075), and the Notre Dame Zahm Travel fund. Generous allocations of computational resources by the TeraGrid (Grant TG-CHE090124) and the Center for Research Computing at the University of Notre Dame are also acknowledged.

References

  1. 1.
    Blaser HU, Schmidt E (2004) Asymmetric catalysis on industrial scale, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Blaser HU, Schmidt E (2010) Asymmetric catalysis on industrial scale, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Dedieu A, Strich A (1979) Inorg Chem 18:2940Google Scholar
  4. 4.
    Dedieu A (1980) Inorg Chem 19:375Google Scholar
  5. 5.
    Dedieu A (1981) Inorg Chem 20:2803Google Scholar
  6. 6.
    Dedieu A, Hylakryspin I (1981) J Organomet Chem 220:115Google Scholar
  7. 7.
    Halpern J, Wong CS (1973) J Chem Soc Chem Commun 629Google Scholar
  8. 8.
    Wink DA, Ford PC (1987) J Am Chem Soc 109:436Google Scholar
  9. 9.
    Montelat S, Vanderen A, Osborn JA, Wilkinson G (1968) J Chem Soc Inorg Phys Theor 1054Google Scholar
  10. 10.
    Duckett SB, Newell CL, Eisenberg R (1994) J Am Chem Soc 116:10548Google Scholar
  11. 11.
    Koga N, Daniel C, Han J, Fu XY, Morokuma K (1987) J Am Chem Soc 109:3455Google Scholar
  12. 12.
    Daniel C, Koga N, Han J, Fu XY, Morokuma K (1988) J Am Chem Soc 110:3773Google Scholar
  13. 13.
    Musaev DG, Morokuma K (1995) J Organomet Chem 504:93Google Scholar
  14. 14.
    Brown JM, Chaloner PA (1978) J Chem Soc Chem Commun 321Google Scholar
  15. 15.
    Brown JM, Chaloner PA (1980) J Chem Soc Chem Commun 344Google Scholar
  16. 16.
    Brown JM, Chaloner PA (1980) J Am Chem Soc 102:3040Google Scholar
  17. 17.
    Brown JM, Chaloner PA, Morris GA (1983) J Chem Soc Chem Commun 664Google Scholar
  18. 18.
    Brown JM, Chaloner PA, Morris GA (1987) J Chem Soc Perkin Trans 2:1583Google Scholar
  19. 19.
    Koga NM, Morokuma K (1989) In: Salahub DRZ, MC (ed) The challenge of d and f electrons: theory and computation (ACS Symposium Series 394). American Chemical Society, Washington DC, p 77Google Scholar
  20. 20.
    Kless A, Borner A, Heller D, Selke R (1997) Organometallics 16:2096Google Scholar
  21. 21.
    Musaev DG, Morokuma K (1995) J Am Chem Soc 117:799Google Scholar
  22. 22.
    Brown JM, Evans PL (1988) Tetrahedron 44:4905Google Scholar
  23. 23.
    Bogdan PL, Irwin JJ, Bosnich B (1989) Organometallics 8:1450Google Scholar
  24. 24.
    Giovannetti JS, Kelly CM, Landis CR (1993) J Am Chem Soc 115:4040Google Scholar
  25. 25.
    Knowles WS, Vineyard BD, Sabacky MJ (1972) J Chem Soc Chem Commun 10Google Scholar
  26. 26.
    Kagan HB, Dang TP (1972) J Am Chem Soc 94:6429Google Scholar
  27. 27.
    Achiwa K (1976) J Am Chem Soc 98:8265Google Scholar
  28. 28.
    Fryzuk MD, Bosnich B (1977) J Am Chem Soc 99:6262Google Scholar
  29. 29.
    Knowles WS (2002) Angew Chem Int Ed 41:1999Google Scholar
  30. 30.
    Knowles WS (2003) Adv Synth Catal 345:3Google Scholar
  31. 31.
    Burk MJ (1991) J Am Chem Soc 113:8518Google Scholar
  32. 32.
    Burk MJ, Feaster JE, Nugent WA, Harlow RL (1993) J Am Chem Soc 115:10125Google Scholar
  33. 33.
    Noyori R, Takaya H (1990) Acc Chem Res 23:345Google Scholar
  34. 34.
    Gridnev ID, Higashi N, Imamoto T (2000) J Am Chem Soc 122:10486Google Scholar
  35. 35.
    Koenig KE, Bachman GL, Vineyard BD (1980) J Org Chem 45:2362Google Scholar
  36. 36.
    Knowles WS (1983) Acc Chem Res 16:106Google Scholar
  37. 37.
    Chan ASC, Pluth JJ, Halpern J (1980) J Am Chem Soc 102:5952Google Scholar
  38. 38.
    Halpern J (1981) Inorg Chim Acta 50:11Google Scholar
  39. 39.
    Halpern J (1982) Science 217:401Google Scholar
  40. 40.
    Landis CR, Halpern J (1987) J Am Chem Soc 109:1746Google Scholar
  41. 41.
    Chua PS, Roberts NK, Bosnich B, Okrasinski SJ, Halpern J (1981) J Chem Soc Chem Commun 1278Google Scholar
  42. 42.
    Giernoth R, Heinrich H, Adams NJ, Deeth RJ, Bargon J, Brown JM (2000) J Am Chem Soc 122:12381Google Scholar
  43. 43.
    Gridnev ID, Imamoto T (2009) Chem Commun 7447Google Scholar
  44. 44.
    Gridnev ID, Higashi N, Asakura K, Imamoto T (2000) J Am Chem Soc 122:7183Google Scholar
  45. 45.
    Gridnev ID, Imamoto T (2004) Acc Chem Res 37:633Google Scholar
  46. 46.
    Imamoto T, Itoh T, Yoshida K, Gridnev ID (2008) Chem Asian J 3:1636Google Scholar
  47. 47.
    Imamoto T, Yashio K, Crepy KVL, Katagiri K, Takahashi H, Kouchi M, Gridnev ID (2006) Organometallics 25:908Google Scholar
  48. 48.
    Landis CR, Hilfenhaus P, Feldgus S (1999) J Am Chem Soc 121:8741Google Scholar
  49. 49.
    Feldgus S, Landis CR (2000) J Am Chem Soc 122:12714Google Scholar
  50. 50.
    Feldgus S, Landis CR (2001) Organometallics 20:2374Google Scholar
  51. 51.
    Landis CR, Feldgus S (2000) Angew Chem Int Ed 39:2863Google Scholar
  52. 52.
    Burk MJ, Casy G, Johnson NB (1998) J Org Chem 63:6084Google Scholar
  53. 53.
    Li M, Tang DY, Luo XL, Shen W (2005) Int J Quantum Chem 102:53Google Scholar
  54. 54.
    Gridnev ID, Higashi N, Imamoto T (2001) Organometallics 20:4542Google Scholar
  55. 55.
    Gridnev ID, Yasutake M, Higashi N, Imamoto T (2001) J Am Chem Soc 123:5268Google Scholar
  56. 56.
    Yasutake M, Gridnev ID, Higashi N, Imamoto T (2001) Org Lett 3:1701Google Scholar
  57. 57.
    Gridnev ID, Yamanoi Y, Higashi N, Tsuruta H, Yasutake M, Imamoto T (2001) Adv Synth Catal 343:118Google Scholar
  58. 58.
    Mori S, Vreven T, Morokuma K (2006) Chem Asian J 1:391Google Scholar
  59. 59.
    Donoghue PJ, Helquist P, Wiest O (2007) J Org Chem 72:839Google Scholar
  60. 60.
    Donoghue PJ, Helquist P, Norrby PO, Wiest O (2008) J Chem Theory Comput 4:1313Google Scholar
  61. 61.
    Donoghue PJ, Helquist P, Norrby PO, Wiest O (2009) J Am Chem Soc 131:410Google Scholar
  62. 62.
    Norrby PO, Liljefors T (1998) J Comput Chem 19:1146Google Scholar
  63. 63.
    Gridnev ID, Imamoto T, Hoge G, Kouchi M, Takahashi H (2008) J Am Chem Soc 130:2560Google Scholar
  64. 64.
    Darcel C, Moulin D, Henry JC, Lagrelette M, Richard P, Harvey PD, Juge S (2007) Eur J Org Chem 2078Google Scholar
  65. 65.
    Gainsford GJ, Falshaw A, Lensink C, Seth M (2008) Polyhedron 27:2529Google Scholar
  66. 66.
    Heinrich H, Giernoth R, Bargon J, Brown JM (2001) Chem Commun 1296Google Scholar
  67. 67.
    Verdolino V, Forbes A, Helquist P, Norrby P-O, Wiest O, (2010) J. Mol. Catal. A 324:9Google Scholar
  68. 68.
    Genet J-P (2003) Acc Chem Res 36:908Google Scholar
  69. 69.
    Blaser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103Google Scholar
  70. 70.
    Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201Google Scholar
  71. 71.
    Sandoval CA, Ohkuma T, Muniz K, Noyori R (2003) J Am Chem Soc 125:13490Google Scholar
  72. 72.
    Noyori R, Ohkuma T (2001) Angew Chem Int Ed 40:40Google Scholar
  73. 73.
    Abbel R, Abdur-Rashid K, Faatz M, Hadzovic A, Lough AJ, Morris RH (2005) J Am Chem Soc 127:1870Google Scholar
  74. 74.
    Wu XF, Vinci D, Ikariya T, Xiao JL (2005) Chem Commun 4447Google Scholar
  75. 75.
    Li TS, Lough A, Churlaud R, Abdur-Rashid K, Morris RH (2003) Abstr Pap Am Chem Soc 226:U743Google Scholar
  76. 76.
    Menashe N, Salant E, Shvo Y (1996) J Organomet Chem 514:97Google Scholar
  77. 77.
    Shvo Y, Goldberg I, Czerkie D, Reshef D, Stein Z (1997) Organometallics 16:133Google Scholar
  78. 78.
    Larsson ALE, Persson BA, Backvall JE (1997) Angew Chem Int Ed 36:1211 (in English)Google Scholar
  79. 79.
    Persson BA, Larsson ALE, Le Ray M, Backvall JE (1999) J Am Chem Soc 121:1645Google Scholar
  80. 80.
    Samec JSM, Ell AH, Backvall JE (2005) Chem Eur J 11:2327Google Scholar
  81. 81.
    Casey CP, Singer SW, Powell DR, Hayashi RK, Kavana M (2001) J Am Chem Soc 123:1090Google Scholar
  82. 82.
    Casey CP, Bikzhanova GA, Cui Q, Guzei IA (2005) J Am Chem Soc 127:14062Google Scholar
  83. 83.
    Casey CP, Johnson JB, Singer SW, Cui Q (2005) J Am Chem Soc 127:3100Google Scholar
  84. 84.
    Noyori R (1994) Asymmetric catalysis in organic synthesis, Chap. 2. Wiley, New YorkGoogle Scholar
  85. 85.
    Helmchen GJ, Schaumann E (1995) Methods of organic chemistry, Stereoselective synthesis, vol E21d. Thieme Verlag, Stuttgart, New York, 3945pGoogle Scholar
  86. 86.
    Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562Google Scholar
  87. 87.
    Takehara J, Hashiguchi S, Fujii A, Inoue S, Ikariya T, Noyori R (1996) Chem Commun 233Google Scholar
  88. 88.
    Hashiguchi S, Fujii A, Haack KJ, Matsumura K, Ikariya T, Noyori R (1997) Angew Chem Int Ed 36:288 (in English)Google Scholar
  89. 89.
    Haack KJ, Hashiguchi S, Fujii A, Ikariya T, Noyori R (1997) Angew Chem Int Ed 36:285 (in English)Google Scholar
  90. 90.
    Gao JX, Ikariya T, Noyori R (1996) Organometallics 15:1087Google Scholar
  91. 91.
    Noyori R, Hashiguchi S (1997) Acc Chem Res 30:97Google Scholar
  92. 92.
    Mashima K, Abe T, Tani K (1998) Chem Lett 1199Google Scholar
  93. 93.
    Ohkuma T, Koizumi M, Doucet H, Pham T, Kozawa M, Murata K, Katayama E, Yokozawa T, Ikariya T, Noyori R (1998) J Am Chem Soc 120:13529Google Scholar
  94. 94.
    Chowdhury RL, Backvall JE (1991) J Chem Soc Chem Commun 1063Google Scholar
  95. 95.
    Genet JP, Ratovelomananavidal V, Pinel C (1993) Synlett 478Google Scholar
  96. 96.
    Krasik P, Alper H (1994) Tetrahedron 50:4347Google Scholar
  97. 97.
    Palmer M, Walsgrove T, Wills M (1997) J Org Chem 62:5226Google Scholar
  98. 98.
    Alonso DA, Guijarro D, Pinho P, Temme O, Andersson PG (1998) J Org Chem 63:2749Google Scholar
  99. 99.
    Alonso DA, Brandt P, Nordin SJM, Andersson PG (1999) J Am Chem Soc 121:9580Google Scholar
  100. 100.
    Yamakawa M, Ito H, Noyori R (2000) J Am Chem Soc 122:1466Google Scholar
  101. 101.
    Petra DGI, Reek JNH, Handgraaf JW, Meijer EJ, Dierkes P, Kamer PCJ, Brussee J, Schoemaker HE, van Leeuwen PWNM (2000) Chem Eur J 6:2818Google Scholar
  102. 102.
    Handgraaf JW, Reek JNH, Meijer EJ (2003) Organometallics 22:3150Google Scholar
  103. 103.
    Noyori R, Yamakawa M, Hashiguchi S (2001) J Org Chem 66:7931Google Scholar
  104. 104.
    Yamakawa M, Yamada I, Noyori R (2001) Angew Chem Int Ed 40:2818Google Scholar
  105. 105.
    Brandt P, Roth P, Andersson PG (2004) J Org Chem 69:4885Google Scholar
  106. 106.
    Rossin A, Kovacs G, Ujaque G, Lledos A, Joo F (2006) Organometallics 25:5010Google Scholar
  107. 107.
    Backvall J-E, Chowdhuri RL, Karlsson U, Wang GZ (1992) In: Williams AF, Floriani C, Merbach G (eds) Perspectives in coordination chemistry. Verlag Helvetica Chimica Acta, Basel, Switzerland, p 463Google Scholar
  108. 108.
    Bacchi A, Balordi M, Cammi R, Elviri L, Pelizzi C, Picchioni F, Verdolino V, Goubitz K, Peschar R, Pelagatti P (2008) Eur J Inorg Chem 4462Google Scholar
  109. 109.
    Hedberg C, Kallstrom K, Arvidsson PI, Brandt P, Andersson PG (2005) J Am Chem Soc 127:15083Google Scholar
  110. 110.
    Noyori R, Kitamura M, Ohkuma T (2004) Proc Natl Acad Sci USA 101:5356Google Scholar
  111. 111.
    Ito M, Hirakawa M, Murata K, Ikariya T (2001) Organometallics 20:379Google Scholar
  112. 112.
    Morris RH, Abdur-Rashid K, Clapham SE, Hadzovic A, Lough A, Harvey JN (2002) Abstr Pap Am Chem Soc 224:U733Google Scholar
  113. 113.
    Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL (1996) Acc Chem Res 29:348Google Scholar
  114. 114.
    Shubina ES, Belkova NV, Epstein LM (1997) J Organomet Chem 536:17Google Scholar
  115. 115.
    Crabtree RH (1998) Science 282:2000Google Scholar
  116. 116.
    Guari Y, Ayllon JA, Sabo-Etienne S, Chaudret B, Hessen B (1998) Inorg Chem 37:640Google Scholar
  117. 117.
    Grundemann S, Ulrich S, Limbach HH, Golubev NS, Denisov GS, Epstein LM, Sabo-Etienne S, Chaudret B (1999) Inorg Chem 38:2550Google Scholar
  118. 118.
    Fryzuk MD, Macneil PA, Rettig SJ (1987) J Am Chem Soc 109:2803Google Scholar
  119. 119.
    Rautenstrauch V, Hoang-Cong X, Churlaud R, Abdur-Rashid K, Morris RH (2003) Chem Eur J 9:4954Google Scholar
  120. 120.
    Ohkuma T, Ooka H, Hashiguchi S, Ikariya T, Noyori R (1995) J Am Chem Soc 117:2675Google Scholar
  121. 121.
    Joubert J, Delbecq F (2006) Organometallics 25:854Google Scholar
  122. 122.
    Joubert J, Delbecq F (2006) J Organomet Chem 691:1030Google Scholar
  123. 123.
    Eyring H (1934) J Chem Phys 3:107Google Scholar
  124. 124.
    Kovacs G, Ujaque G, Lledos A, Joo F (2006) Organometallics 25:862Google Scholar
  125. 125.
    Comas-Vives A, Ujaque G, Lledos A (2007) Organometallics 26:4135Google Scholar
  126. 126.
    Blum Y, Czarkie D, Rahamim Y, Shvo Y (1985) Organometallics 4:1459Google Scholar
  127. 127.
    Shvo Y, Czarkie D, Rahamim Y, Chodosh DF (1986) J Am Chem Soc 108:7400Google Scholar
  128. 128.
    Handgraaf JW, Meijer EJ (2007) J Am Chem Soc 129:3099Google Scholar
  129. 129.
    Leyssens T, Peeters D, Harvey JN (2008) Organometallics 27:1514Google Scholar
  130. 130.
    Corey EJ, Bailar JC (1959) J Am Chem Soc 81:2620Google Scholar
  131. 131.
    Breneman CM, Wiberg KB (1990) J Comput Chem 11:361Google Scholar
  132. 132.
    For use of STERIMOL parameters in QSAR, Hogberg T, Norinder U (1996) In: Krogsgaard-Larsen P, Liljefors T, Madsen U (eds) A textbook of drug design and development, 2nd edn. Harwood Academic, AmsterdamGoogle Scholar
  133. 133.
    Troutman MV, Appella DH, Buchwald SL (1999) J Am Chem Soc 121:4916Google Scholar
  134. 134.
    Pfaltz A (1999) Synlett 835Google Scholar
  135. 135.
    Helmchen G, Pfaltz A (2000) Acc Chem Res 33:336Google Scholar
  136. 136.
    Blackmond DG, Lightfoot A, Pfaltz A, Rosner T, Schnider P, Zimmerman N (2000) Chirality 12:442Google Scholar
  137. 137.
    Lightfoot A, Schnider P, Pfaltz A (1998) Angew Chem Int Ed 37:2897Google Scholar
  138. 138.
    Blankenstein J, Pfaltz A (2001) Angew Chem Int Ed 40:4445Google Scholar
  139. 139.
    Drago D, Pregosin PS, Pfaltz A (2002) Chem Commun 286Google Scholar
  140. 140.
    Menges F, Neuburger M, Pfaltz A (2002) Org Lett 4:4713Google Scholar
  141. 141.
    Menges F, Pfaltz A (2002) Adv Synth Catal 344:40Google Scholar
  142. 142.
    Bunlaksananusorn T, Polborn K, Knochel P (2003) Angew Chem Int Ed 42:3941Google Scholar
  143. 143.
    Cozzi PG, Menges F, Kaiser S (2003) Synlett 833Google Scholar
  144. 144.
    Xu GP, Gilbertson SR (2003) Tetrahedron Lett 44:953Google Scholar
  145. 145.
    Hou DR, Reibenspies JH, Burgess K (2001) J Org Chem 66:206Google Scholar
  146. 146.
    Crabtree R (1979) Acc Chem Res 12:331Google Scholar
  147. 147.
    Powell MT, Hou DR, Perry MC, Cui XH, Burgess K (2001) J Am Chem Soc 123:8878Google Scholar
  148. 148.
    Perry MC, Cui XH, Powell MT, Hou DR, Reibenspies JH, Burgess K (2003) J Am Chem Soc 125:113Google Scholar
  149. 149.
    Brandt P, Hedberg C, Andersson PG (2003) Chem Eur J 9:339Google Scholar
  150. 150.
    Crabtree RH, Felkin H, Morris GE (1977) J Organomet Chem 141:205Google Scholar
  151. 151.
    Fan YB, Cui XH, Burgess K, Hall MB (2004) J Am Chem Soc 126:16688Google Scholar
  152. 152.
    Cui XH, Fan YB, Hall MB, Burgess K (2005) Chem Eur J 11:6859Google Scholar
  153. 153.
    Mashima K, Abe T, Tani K (1998) Chem Lett 1201Google Scholar
  154. 154.
    Murata K, Ikariya T (1999) J Org Chem 64:2186Google Scholar
  155. 155.
    Zassinovich G, Bettella R, Mestroni G, Brescianipahor N, Geremia S, Randaccio L (1989) J Organomet Chem 370:187Google Scholar
  156. 156.
    Petra DGI, Kamer PCJ, Spek AL, Schoemaker HE, van Leeuwen PWNM (2000) J Org Chem 65:3010Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aaron Forbes
    • 1
  • Vincenzo Verdolino
    • 2
  • Paul Helquist
    • 1
  • Olaf Wiest
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  2. 2.Faculty of InformaticsUniversità della Svizzera italiana (USI-ETH)LuganoSwitzerland

Personalised recommendations