New Insights into the Molecular Mechanism of H2 Activation

  • Guixiang Zeng
  • Yong Guo
  • Shuhua Li


Mechanistic studies of H2 activation by the newly developed frustrated Lewis acid–Lewis base pairs, main-group metal complexes, transition-metal thiolate complexes, and transition-metal-based pincer ligand catalysts have been reviewed in this chapter. The reaction of H2 with frustrated Lewis acid–Lewis base pairs and main-group metal complexes is found to proceed via an unprecedented concerted Lewis acid–Lewis base mechanism. The molecular mechanism of H2 with transition metal thiolate complexes depends on the transition metals. The iridium thiolate complex splits the H–H bond through the oxidation addition step, while the rhodium thiolate complex heterolytically cleaves the H–H bond with a nonclassical dihydrogen complex as the intermediate. In the reaction of H2 with the transition-metal-based pincer ligand complex, the metal center and the pincer ligand work cooperatively through the dearomatization/aromatization process of the pincer ligand.


Lewis Base Free Energy Barrier Heterolytic Cleavage Benzylic Carbon Thiolate Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 20625309 and 20833003)


  1. 1.
    Laser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103CrossRefGoogle Scholar
  2. 2.
    Saudan LA (2007) Acc Chem Res 40:1309CrossRefGoogle Scholar
  3. 3.
    Torres GC, Ledesma SD, Jablonski EL, Miguel SRD, Scelza OA (1999) Catal Today 48:65CrossRefGoogle Scholar
  4. 4.
    Malacea R, Poli R, Manoury E (2010) Coord Chem Rev 254:729CrossRefGoogle Scholar
  5. 5.
    Özkar S, Finke RG (2005) J Am Chem Soc 127:4800CrossRefGoogle Scholar
  6. 6.
    Zhao L, Li H, Lu G, Wang Z (2010) Daltan Trans 39:4038CrossRefGoogle Scholar
  7. 7.
    Clapham SE, Hadzovic A, Morris RH (2004) Coord Chem Rev 248:2201CrossRefGoogle Scholar
  8. 8.
    Knowles WS (1983) Acc Chem Res 16:106CrossRefGoogle Scholar
  9. 9.
    Mikami K, Korenaga T, Terada M, Ohkuma T, Pham T, Noyori R (1999) Angew Chem Int Ed 38:495CrossRefGoogle Scholar
  10. 10.
    Tang WJ, Zhang MX (2003) Chem Rev 103:3029CrossRefGoogle Scholar
  11. 11.
    Shima S, Thauer RK (2006) Chem Rec 7:37CrossRefGoogle Scholar
  12. 12.
    Frey M (2002) Chembiochem 3:153CrossRefGoogle Scholar
  13. 13.
    Vignais PM, Billoud B, Meyer J (2001) FEMS Microbiol Rev 25:455Google Scholar
  14. 14.
    Drennan CL, Peters JW (2003) Curr Opin Struct Biol 13:220CrossRefGoogle Scholar
  15. 15.
    Thauer RK (1998) Microbiology 144:2377CrossRefGoogle Scholar
  16. 16.
    Huhmann-Vincent J, Scott BL, Kubas GJ (1999) Inorg Chim Acta 294:240CrossRefGoogle Scholar
  17. 17.
    Thauer RK, Klein AR, Hartmann GC (1996) Chem Rev 96:3031CrossRefGoogle Scholar
  18. 18.
    United Nations Development Program (2003) World Energy Assessment Report: energy and the challenge of sustainability. United Nations, New YorkGoogle Scholar
  19. 19.
    Grant PM (2003) Nature 424:129CrossRefGoogle Scholar
  20. 20.
    Coontz R, Hanson B (2004) Science 305:957CrossRefGoogle Scholar
  21. 21.
    Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439CrossRefGoogle Scholar
  22. 22.
    Reisner E, Fonticella-Camps JC, Armstrong FA (2009) Chem Commun 550Google Scholar
  23. 23.
    Welch GC, Juan SRR, Masuda JD, Stephan DW (2006) Science 314:1124CrossRefGoogle Scholar
  24. 24.
    Welch GC, Stephan DW (2007) J Am Chem Soc 129:1880CrossRefGoogle Scholar
  25. 25.
    Spies P, Erker G, Kehr G, Ergander K, Fröhlich R, Grimme S, Stephan DW (2007) Chem Commun 47:5072CrossRefGoogle Scholar
  26. 26.
    Chase PA, Stephan DW (2008) Angew Chem Int Ed 47:7433CrossRefGoogle Scholar
  27. 27.
    Sumerin V, Schulz F, Atsumi M, Wang C, Nieger M, Leskela M, Repo T, Pyykko P, Rieger B (2008) J Am Chem Soc 130:14117CrossRefGoogle Scholar
  28. 28.
    Chase PA, Jurca T, Stephan DW (2008) Chem Commun 1701Google Scholar
  29. 29.
    Holschumacher D, Bannenberg T, Hrib CG, Jones PG, Tamm M (2008) Angew Chem Int Ed 47:7428CrossRefGoogle Scholar
  30. 30.
    Mömming CM, Ottem E, Kehr G, Fröhlich R, Grimme S, Stephan DW (2009) Angew Chem Int Ed 48:6643CrossRefGoogle Scholar
  31. 31.
    Geoffrey HS, James CF, Philip PP (2005) J Am Chem Soc 127:12232CrossRefGoogle Scholar
  32. 32.
    Koltting C, Sander W (1999) J Am Chem Soc 121:8891CrossRefGoogle Scholar
  33. 33.
    Zuev PS, Sheridan RS (2001) J Am Chem Soc 123:12434CrossRefGoogle Scholar
  34. 34.
    Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G (2007) Science 316:439CrossRefGoogle Scholar
  35. 35.
    Sumerin V, Schulz F, Nieger M, Leskel M, Repo T, Rieger B (2008) Angew Chem Int Ed 47:6001CrossRefGoogle Scholar
  36. 36.
    Holschumacher D, Bannenberg T, Hrib CG, Jones PG, Tamm M (2008) Angew Chem Int Ed 47:7428CrossRefGoogle Scholar
  37. 37.
    Chase PA, Stephan DW (2008) Angew Chem Int Ed 47:7433CrossRefGoogle Scholar
  38. 38.
    Herrmann WA, Denk M, Behm J, Scherer W, Klingan FR, Bock H, Solouki B, Wagner M (1992) Angew Chem Int Ed Engl 31:1485CrossRefGoogle Scholar
  39. 39.
    Kühl O (2004) Coord Chem Rev 248:411CrossRefGoogle Scholar
  40. 40.
    Leigh WJ, Lollmahomed F, Harrington CR, Mcdonald JM (2006) Organometallics 25:5424 and references thereinGoogle Scholar
  41. 41.
    Kühl O (2008) Central Eur J Chem 6:365CrossRefGoogle Scholar
  42. 42.
    Ullah F, Kühl O, Bajor G, Veszprémi T, Jones PG, Heinicke J (2009) Eur J Inorg Chem 7:221CrossRefGoogle Scholar
  43. 43.
    Saur I, Alonso SG, Barrau J (2005) Appl Organomet Chem 19:414CrossRefGoogle Scholar
  44. 44.
    Boughdiri S, Hussein K, Tangour B, Dahrouch M, Rivière-Baudet M, Barthelat JC (2004) J Organomet Chem 689:3279CrossRefGoogle Scholar
  45. 45.
    Kassaee MZ, Musaki SM, Ghambarian M, Zanjani MRK (2006) J Organomet Chem 691:2933CrossRefGoogle Scholar
  46. 46.
    Geoffrey HS, James CF, Philip PP (2005) J Am Chem Soc 127:12232CrossRefGoogle Scholar
  47. 47.
    Peng Y, Brynda M, Ellis BD, Fettinger JC, Rivard E, Power PP (2008) Chem Commun 6042Google Scholar
  48. 48.
    Takagi N, Nagase S (2001) Organometallics 20:5498CrossRefGoogle Scholar
  49. 49.
    Kubas GJ, Ryan RR, Swanson BI, Vergamini PJ, Wasserman HJ (1984) J Am Chem Soc 106:451CrossRefGoogle Scholar
  50. 50.
    Kubas GJ (2004) Adv Inorg Chem 56:127CrossRefGoogle Scholar
  51. 51.
    Kubas GJ (2001) J Organomet Chem 635:37CrossRefGoogle Scholar
  52. 52.
    Niu S, Thomson LM, Hall MB (1999) J Am Chem Soc 121:4000CrossRefGoogle Scholar
  53. 53.
    Amara P, Volbeda A, Fontecilla-Camps JC, Field MJ (1999) J Am Chem Soc 121:4468CrossRefGoogle Scholar
  54. 54.
    Ogata H, Mizoguchi Y, Mizuno N, Miki K, Adachi S, Yasuoka N, Yagi T, Yamauchi O, Hirota S, Higuchi Y (2002) J Am Chem Soc 124:11628CrossRefGoogle Scholar
  55. 55.
    Bruschi M, Zampella G, Fantucci P, DeGioia L (2005) Coord Chem Rev 249:1620CrossRefGoogle Scholar
  56. 56.
    Teixeira VH, Baptista AM, Soares CM (2006) Biophys J 91:2035CrossRefGoogle Scholar
  57. 57.
    Schlaf M, Lough AJ, Morris RH (1996) Organometallics 15:4423CrossRefGoogle Scholar
  58. 58.
    Sellmann D, Rackelmann GH, Heinemann FW (1997) Chem Eur J 3:2071CrossRefGoogle Scholar
  59. 59.
    Sweeney ZK, Polse JL, Andersen RA, Bergman RG, Kubinec MG (1997) J Am Chem Soc 119:4543CrossRefGoogle Scholar
  60. 60.
    Sellmann D, Sutter J (1997) Acc Chem Res 30:460CrossRefGoogle Scholar
  61. 61.
    Sellmann D, Gottschalk-Gaudig T, Heinemann FW (1998) Inorg Chem 37:3982CrossRefGoogle Scholar
  62. 62.
    Sellmann D, Fürsattel A (1999) Angew Chem Int Ed 38:2023CrossRefGoogle Scholar
  63. 63.
    Ohki Y, Sakamoto M, Tatsumi K (2008) J Am Chem Soc 130:11610CrossRefGoogle Scholar
  64. 64.
    Zhang J, Leitus G, Ben-David Y, Milstein D (2005) J Am Chem Soc 127:10840CrossRefGoogle Scholar
  65. 65.
    Ben-Ari E, Leitus G, Shimon LJW, Milstein D (2006) J Am Chem Soc 128:15390CrossRefGoogle Scholar
  66. 66.
    Berkessel A, Schubert TJS, Müller TN (2002) J Am Chem Soc 124:8693CrossRefGoogle Scholar
  67. 67.
    Chan B, Radom L (2005) J Am Chem Soc 127:2443CrossRefGoogle Scholar
  68. 68.
    Spielmann J, Buch F, Harder S (2008) Angew Chem Int Ed 47:9434CrossRefGoogle Scholar
  69. 69.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  70. 70.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  71. 71.
    Guo Y, Li S (2008) Inorg Chem 47:6212CrossRefGoogle Scholar
  72. 72.
    Rokob TA, Hamza A, Stirling A, Soós T, Pápai I (2008) Angew Chem Int Ed 47:2435CrossRefGoogle Scholar
  73. 73.
    Zeng G, Li S (2010) Inorg Chem 49:3361CrossRefGoogle Scholar
  74. 74.
    Tao J, Li S (2010) Dalton Trans 39:857CrossRefGoogle Scholar
  75. 75.
    Becke ADJ (1993) Chem Phys 9:5648Google Scholar
  76. 76.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  77. 77.
    Zeng G, Guo Y, Li S (2009) Inorg Chem 48:10257CrossRefGoogle Scholar
  78. 78.
    Caldin EF (1969) Chem Rev 69:135CrossRefGoogle Scholar
  79. 79.
    Kohen A, Cannio R, Bartolucci S, Klinman JP (1999) Nature 399:496CrossRefGoogle Scholar
  80. 80.
    Iron MA, Ben-Ari E, Cohen R, Milstein D (2009) Dalton Trans 9433Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational ChemistryNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations