Applying Backtracking Heuristics for Constrained Two-Dimensional Guillotine Cutting Problems

  • Luiz Jonatã
  • Piresde Araújo
  • Plácido Rogério Pinheiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7030)


The Backtracking Heuristic (BH) methodology consists in to construct blocks of items by combination beetween heristics, that solve mathematical programming models, and backtrack search algorithm to figure out the best heuristics and their best ordering. BH has been re- cently introduced in the literature in order to solve three-dimensional Knapsack Loadin Problems, showing promising results. In the present Work we apply the same methodology to solve constrained two-dimensional Guillotine cutting problems. In order to assess the potentials of this novel ersion also for cutting problems, we conducted computational experiments on a set of difficult and well known benchmark instances.


Cutting Problems Backtracking Integer Programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aráujo, L.J.P., Pinheiro, P.R.: Combining Heuristics Backtracking and Genetic Algorithm to Solve the Container Loading Problem withWeight Distribution. Advances in Intelligent and Soft Computing 73, 95–102 (2010)CrossRefGoogle Scholar
  2. 2.
    Aráujo, L.J.P., Pinheiro, P.R.: Heuristics Backtracking and a Typical Genetic Algorithm for the Container Loading Problem withWeight Distribution. Communications in Computer and Information Science 16, 252–259 (2010)CrossRefGoogle Scholar
  3. 3.
    Arenales, M.N., Morabito, R.N.: An And/Or-Graph Approach To The Solution Of Two-Dimensional non-Guillotine Cutting Problems. European Journal of Operational Research 84(1), 599–617 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Beasley, J.E.: An Exact Two-dimensional Non-guillotine Cutting Tree Search Procedure. Operations Research 33(1), 49–64 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beasley, J.E.: Algorithms for Unconstrained Two-dimensional Guillotine Cutting. Journal of Operational Research Society 36(4), 297–306 (1985)CrossRefzbMATHGoogle Scholar
  6. 6.
    Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)CrossRefGoogle Scholar
  7. 7.
    Bischoff, E., Dowsland, W.B.: An Application of the Micro to Product Design and Distribution. Journal of the Operational Research Society 33(3), 271–280 (1982)CrossRefGoogle Scholar
  8. 8.
    Blesa, M.J., Blum, C., Roli, A., Sampels, M.: HM 2005. LNCS, vol. 3636, pp. VI–VII. Springer, Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Raidl, G.R.: A Unified View on Hybrid Metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Carnieri, C., Mendoza, G.A., Lupold, W.G.: Optimal Cutting of Dimension Parts from Lumber with defect: a Heuristic Solution Procedure. Forest Products Journal, 66–72 (1993)Google Scholar
  11. 11.
    Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Operations Research 25(1), 30–44 (1977)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dowsland, K.A., Dowsland, W.B.: Packing Problems. European Journal of Operational Research 56(1), 2–14 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fekete, S.P., Schepers, J.: A New Exact Algorithm for General Orthogonal D-dimensional Knapsack Problems. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 144–156. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S., Sethi, R.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  16. 16.
    Gilmore, P., Gomory, R.: A Linear Programming Approach to the Cutting Stock Problem. Operations Research 9, 849–859 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gilmore, P., Gomory, R.: A Linear Programming Approach to the Cutting Stock Problem - Part II. Operations Research 11, 863–888 (1963)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gilmore, P., Gomory, R.: Multistage Cutting Stock Problems of Two and MoreDimensions. Operations Research 14, 94–120 (1965)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mahfoud, S.W., Goldberg, D.E.: Parallel Recombinative Simulated Annealing: A Genetic Algorithm. Parallel Computing 21(1), 1–28 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Morabito, R.N., Arenales, M.N., Arcaro, V.F.: An And-Or Graph Approach For Two-Dimens ional Cutting Problems. European Journal of Operational Research 58(2), 263–271 (1992)CrossRefzbMATHGoogle Scholar
  21. 21.
    Morabito, R., Arenales, M.: An and/or-graph approach to the container loading problem. International Transactions in Operational Research 1, 59–73 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Moscato, P.: Memetic algorithms: A short introduction. In: New Ideas in Optimization, pp. 219–234. McGraw-Hill (1999)Google Scholar
  23. 23.
    Nepomuceno, N., Pinheiro, P.R., Coelho, A.L.V.: Tackling the Container Loading Problem: A Hybrid Approach Based on Integer Linear Programming and Genetic Algorithms. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 154–165. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Nepomuceno, N.V., Pinheiro, P.R., Coelho, A.L.V.: A Hybrid Optimization Framework for Cutting and Packing Problems: Case Study on Constrained 2D Nonguillotine Cutting. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary Computation for Combinatorial Optimization. SCI, vol. 153, ch. 6, pp. 87–99. Springer, Heidelberg (2008) ISBN:978-3-540-70806-3CrossRefGoogle Scholar
  25. 25.
    Oliveira, J.F., Ferreira, J.S.: An improved version of Wang’s algorithm for two-dimensional cutting problems. European Journal of Operational Research 44, 256–266 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pinheiro, P.R., Coelho, A.L.V., Aguiar, A.B., Bonates, T.O.: On the Concept of Density Control and its Application to a Hybrid Optimization Framework: Investigation into Cutting Problems. Computers & Industrial Engineering (to appear, 2011)Google Scholar
  27. 27.
    Pisinger, D.: Heuristc for the Conteiner Loading Problem. European Journal of Operational Research 141, 382–392 (2000)CrossRefGoogle Scholar
  28. 28.
    Tschoke, S., Holthofer, N.: A new parallel approach to the constrained two-dimensional cutting stock problem. Preprint, University of Paderbon, D.C.S. 33095 Paderborn, Germany (1996)Google Scholar
  29. 29.
    Wang, P.Y.: Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems. Operations Research 31, 573–586 (1983)CrossRefzbMATHGoogle Scholar
  30. 30.
    Wascher, G., Hausner, H., Schumann, H.: An improved typology of cutting and packing problems. European Journal of Operational Research 183(3), 1109–1130 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luiz Jonatã
    • 1
  • Piresde Araújo
    • 1
  • Plácido Rogério Pinheiro
    • 1
  1. 1.Graduate Program in Applied InformaticsUniversity of Fortaleza(UNIFOR)FortalezaBrazil

Personalised recommendations