Advertisement

Distance-Related Invariants of Fasciagraphs and Rotagraphs

  • Fuqin Zhan
  • Youfu Qiao
  • Huiying Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7030)

Abstract

The Szeged index, edge Szeged index and GA 2 index of graphs are new topological indices presented very recently. In this paper, a definition approach to the computation of distance-related invariants of fasciagraphs and rotagraphs is presented. Using those formulas, the Szeged index, edge Szeged index and GA 2 index of several graphs are computed.

Keywords

Graph invariant Szeged index Edge Szeged index Geometric-arithmetic index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babic, D., Graovac, A., Mohar, B., Pisanski, T.: The matching polynomial of a polygraph. Discrete Appl. Math. 15, 11–24 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Juvan, M., Mohar, B., Graovac, A., Klavzar, S., Zerovnik, J.: Fast computation of the Wiener index of fasciagraphs and rotagraphs. J. Chem. Inf. Comput. Sci. 35, 834–840 (1995)CrossRefGoogle Scholar
  3. 3.
    Klavzar, S., Zerovnik, J.: Algebraic approach to fasciagraphs and rotagraphs. Discrete Appl. Math. 68, 93–100 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mekenyan, O., Dimitrov, S., Bonchev, D.: Graph-theoretical approach to the calculation of physico-chemical properties of polymers. European Polym. J. 19, 1185–1193 (1983)CrossRefGoogle Scholar
  5. 5.
    Chang, T.Y., Clark, W.E.: The domination numbers of the 5×n and 6×n grid graphs. J. Graph Theory 17, 81–107 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dolati, A., Motevavian, I., Ehyaee, A.: Szeged index, edge Szeged index, and semi-star trees. Discrete Appl. Math. 158, 876–881 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mansour, T., Schork, M.: The vertex PI index and Szeged index of bridge graphs. Discrete Appl. Math. 157, 1600–1606 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fath-Tabar, G., Furtula, B., Gutman, I.: A new geometric-arithmetic index. J. Math. Chem. 47, 477–486 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhou, B., Gutman, I., Furtula, B., Du, Z.: On two types of geometric-arithmetic index. Chem. Phys. Lett. 482, 153–155 (2009)CrossRefGoogle Scholar
  10. 10.
    Eliasi, M., Iranmanesh, A.: On ordinary generalized geometric-arithmetic index. Appl. Math. Lett. (in press)Google Scholar
  11. 11.
    Hao, J.: Some graphs with extremal PI index. MATCH Commun. Math. Comput. Chem. 63, 211–216 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fuqin Zhan
    • 1
  • Youfu Qiao
    • 1
  • Huiying Zhang
    • 2
  1. 1.Department of MathematicsHechi UniversityYizhouChina
  2. 2.Department of Chemistry and Life ScienceHechi UniversityYizhouChina

Personalised recommendations