Computational Soundness about Formal Encryption in the Presence of Secret Shares and Key Cycles

  • Xinfeng Lei
  • Rui Xue
  • Ting Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7043)

Abstract

The computational soundness of formal encryption is studied extensively following the work of Abadi and Rogaway[1]. Recent work considers the scenario in which secret sharing is needed, and separately, the scenario when key cycles are present. The novel technique is the use of a co-induction definition of the adversarial knowledge. In this paper, we prove a computational soundness theorem of formal encryption in the presence of both key cycles and secret shares at the same time, which is a non-trivial extension of former approaches.

Keywords

Encryption Scheme Secret Share Secret Sharing Scheme Access Control Policy Cryptographic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Rogaway, P.: Reconciling Two Views of Cryptography (the Computational Soundness of Formal Encryption). In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Dolev, D., Yao, A.C.: On the security of public-key protocols. IEEE Transactions on Information Theory 30(2), 198–208 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transactions on Computer Systems 8(1), 18–36 (1990)CrossRefMATHGoogle Scholar
  4. 4.
    Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6, 85–128 (1998)CrossRefGoogle Scholar
  5. 5.
    Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Information and Computation 148(1), 1–70 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Goldwasser, S., Micali, S.: Probabilistic encryption. JCSS 28(2), 270–299 (1984)MathSciNetMATHGoogle Scholar
  7. 7.
    Yao, A.C.: Theory and application of trapdoor functions. In: Proc. 23rd IEEE Symp. on Foundations of Comp. Science, Chicago, pp. 80–91 (1982)Google Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42th IEEE Symposium on Foundations of Computers Science, pp. 136–145 (2001)Google Scholar
  10. 10.
    Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic library. Report 2003/015, Cryptology ePrint Archive (January 2003)Google Scholar
  11. 11.
    Herzog, J.: Computational soundness for standard assumptions of formal cryptography. PhD thesis, Massachusetts Institute of Technology (2004)Google Scholar
  12. 12.
    Micciancio, D., Warinschi, B.: Soundness of Formal Encryption in the Presence of Active Adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of Formal Encryption in the Presence of Key-cycles. In: di Vimercati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Laud, P.: Symmetric encryption in automatic analyses for confidentiality against active adversaries. In: IEEE Symposium on Security and Privacy, pp. 71–85. IEEE Computer Society (2004)Google Scholar
  15. 15.
    Blanchet, B., Pointcheval, D.: Automated Security Proofs with Sequences of Games. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Abadi, M., Warinschi, B.: Security analysis of cryptographically controlled access to XML documents. Journal of the ACM 55(2), 6:1–6:29 (2008)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Micciancio, D.: Computational Soundness, Co-induction, and Encryption Cycles. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 362–380. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In: Freytag, J.C., Lockemann, P.C., Abiteboul, S., Carey, M.J., Selinger, P.G., Heuer, A. (eds.) VLDB 2003: Proceedings of 29th International Conference on Very Large Data Bases, Berlin, Germany, Los Altos, CA 94022, USA, September 9–12, pp. 898–909. Morgan Kaufmann Publishers (2003)Google Scholar
  20. 20.
    Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable Anonymous Credentials with Optional Anonymity Revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Laud, P.: Encryption cycles and two views of cryptography. In: Proceedings of the 7th Nordic Workshop on Secure IT Systems – NORDSEC 2002, Karlstad, Sweden, pp. 85–100 (2002)Google Scholar
  22. 22.
    Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness and completeness of formal encryption: The cases of key cycles and partial information leakage. Journal of Computer Security 17(5), 737–797 (2009)CrossRefGoogle Scholar
  23. 23.
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme Security in the Presence of Key-dependent Messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Hofheinz, D., Unruh, D.: Towards Key-dependent Message Security in the Standard Model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 108–126. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure Encryption from Decision Diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Haitner, I., Holenstein, T.: On the (Im)possibility of Key Dependent Encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Micciancio, D.: Pseudo-randomness and partial information in symbolic security analysis. Cryptology ePrint Archive, Report 2009/249 (2009), http://eprint.iacr.org/
  28. 28.
    Lei, X., Xue, R., Yu, T.: Computational soundness about formal encryption in the presence of secret shares and key cycles. Cryptology ePrint Archive, Report 2010/467 (2010), http://eprint.iacr.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xinfeng Lei
    • 1
  • Rui Xue
    • 1
  • Ting Yu
    • 2
  1. 1.State Key Laboratory of Information SecurityInstitute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.Department of Computer ScienceNorth Carolina State UniversityUSA

Personalised recommendations