Forward Secure Ring Signature without Random Oracles

  • Joseph K. Liu
  • Tsz Hon Yuen
  • Jianying Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7043)

Abstract

In this paper, we propose a forward secure ring signature scheme without random oracles. With forward security, if a secret key of a corresponding ring member is exposed, all previously signed signatures containing this member remain valid. Yet the one who has stolen the secret key cannot produce any valid signature belonged to the past time period. This is especially useful in the case of ring signature, as the exposure of a single secret key may result in the invalidity of thousands or even millions ring signatures which contain that particular user. However, most of the ring signature schemes in the literature do not provide forward security. The only one with this feature [15] relies on random oracles to prove the security. We are the first to construct a forward secure ring signature scheme that can be proven secure without random oracles. Our scheme can be deployed in many applications, such as wireless sensor networks and smart grid system.

Keywords

Wireless Sensor Network Signature Scheme Smart Grid Ring Signature Random Oracle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Miner, S., Namprempre, C.: Forward-secure Threshold Signature Schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 441–456. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Reyzin, L.: A New Forward-secure Digital Signature Scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Anderson, R.: Two remarks on public key cryptology. Technical Report UCAM-CL-TR-549, University of Cambridge, Computer Laboratory (December 2002); Relevant material presented by the author in an invited lecture at CCS 1997 Google Scholar
  4. 4.
    Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-oracle-model Scheme for a Hybrid-Encryption Problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Miner, S.: A Forward-secure Digital Signature Scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press (1993)Google Scholar
  7. 7.
    Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Constructions without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In: STOC, pp. 209–218 (1998)Google Scholar
  10. 10.
    Canetti, R., Halevi, S., Katz, J.: A Forward-secure Public-key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Chow, S.S., Liu, J.K., Wei, V.K., Yuen, T.H.: Ring signatures without random oracles. In: ASIACCS 2006, pp. 297–302. ACM Press (2006)Google Scholar
  12. 12.
    Itkis, G., Reyzin, L.: Forward-secure Signatures with Optimal Signing and Verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In: The 7th ACM Conference on Computer and Communications Security, pp. 108–115. ACM Press (2000)Google Scholar
  14. 14.
    Liu, J.K., Wei, V.K., Wong, D.S.: A Separable Threshold Ring Signature Scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–369. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Liu, J.K., Wong, D.S.: Solutions to key exposure problem in ring signature. I. J. Network Security 6(2), 170–180 (2008)Google Scholar
  16. 16.
    Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random oracles (full version). Cryptology ePrint Archive, Report 2011/472 (2011), http://eprint.iacr.org/
  17. 17.
    Malkin, T., Micciancio, D., Miner, S.: Efficient Generic Forward-secure Signatures with an Unbounded Number of Time Periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Microsoft. Conserve Energy, Save Money - Microsoft Hohm (2009), http://www.microsoft-hohm.com/
  19. 19.
    N. I. of Standards and Technology. Nist ir 7628: Guidelines for smart grid cyber security. Technical report, http://csrc.nist.gov/publications/PubsNISTIRs.html
  20. 20.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Schäge, S., Schwenk, J.: A Cdh-based Ring Signature Scheme with Short Signatures and Public Keys. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 129–142. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Shacham, H., Waters, B.: Efficient Ring Signatures without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Song, D.X.: Practical forward secure group signature schemes. In: The 8th ACM Conference on Computer and Communications Security, pp. 225–234. ACM Press (2001)Google Scholar
  24. 24.
    Wong, D.S., Fung, K., Liu, J.K., Wei, V.K.: On the RS-Code Construction of Ring Signature Schemes and a Threshold Setting of RST. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 34–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Xu, J., Zhang, Z., Feng, D.: A Ring Signature Scheme using Bilinear Pairings. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 160–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Yu, J., Hao, R., Kong, F., Cheng, X., Fan, J., Chen, Y.: Forward-secure identity-based signature: Security notions and construction. Information Sciences 181(3), 648–660 (2011)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joseph K. Liu
    • 1
  • Tsz Hon Yuen
    • 2
  • Jianying Zhou
    • 1
  1. 1.Institute for Infocomm ResearchSingapore
  2. 2.University of Hong KongHong Kong

Personalised recommendations