Advertisement

Feature Selection of Hand Biometrical Traits Based on Computational Intelligence Techniques

  • R. M. Luque
  • D. Elizondo
  • E. López-Rubio
  • E. J. Palomo
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 394)

Abstract

This chapter presents a novel methodology for using feature selection in hand biometric systems, based on genetic algorithms and mutual information. The aim is to provide a standard features dataset which diminishes the number of features to extract and decreases the complexity of the whole identification process. The experimental results show that it is not always necessary to apply sophisticated and complex classifiers to obtain good accuracy rates. This methodology approach manages to discover the most suitable geometric hand features, among all the extracted data, to perform the classification task. Simple classifiers like K-Nearest Neighbour (kNN) or Linear Discriminant Analysis (LDA) in combination with this strategy, getting even better results than other more complicated approaches.

Keywords

Genetic Algorithm Feature Selection Mutual Information Independent Component Analysis Feature Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)CrossRefGoogle Scholar
  2. 2.
    Sanchez-Reillo, R., Sanchez-Avila, C., Gonzalez-Marcos, A.: Biometric identification through hand geometry measurements. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1168–1171 (2000)CrossRefGoogle Scholar
  3. 3.
    Duta, N.: A survey of biometric technology based on hand shape. Pattern Recognition 42(11), 2797–2806 (2009)CrossRefGoogle Scholar
  4. 4.
    Fong, L.L., Seng, W.C.: A comparison study on hand recognition approaches. In: International Conference of Soft Computing and Pattern Recognition, SOCPAR, pp. 364–368 (2009)Google Scholar
  5. 5.
    Kumar, A., Wong, D., Shen, H., Jain, A.: Personal verification using palmprint and hand geometry biometric. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 668–678. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Zhang, D., Kong, W.K., You, J., Wong, M.: Online palmprint identification. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1041–1050 (2003)CrossRefGoogle Scholar
  7. 7.
    Esther Rani, P., Shanmuga Lakshmi, R.: Palmprint recognition system using zernike moments feature extraction. In: Das, V.V., Vijaykumar, R. (eds.) ICT 2010. CCIS, vol. 101, pp. 449–454. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Nanni, L., Lumini, A.: Ensemble of multiple palmprint representation. Expert Systems with Applications 36(3, Part 1), 4485–4490 (2009)CrossRefGoogle Scholar
  9. 9.
    Dutağaci̇, H., Sankur, B., Yörük, E.: Comparative analysis of global hand appearance-based person recognition. Journal of Electronic Imaging 17(1), 011018 (2008)Google Scholar
  10. 10.
    Kumar, A., Zhang, D.: Personal recognition using hand shape and texture. IEEE Transactions on Image Processing 15(8), 2454–2461 (2006)CrossRefGoogle Scholar
  11. 11.
    Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recognition Letters 24(13), 2115–2125 (2003)CrossRefGoogle Scholar
  12. 12.
    Faundez-Zanuy, M., Elizondo, D., Ferrer-Ballester, M.N., Travieso-Gonzàlez, C.: Authentication of individuals using hand geometry biometrics: A neural network approach. Neural Processing Letters 26, 201–216 (2007)CrossRefGoogle Scholar
  13. 13.
    Yörük, E., Dutagaci, H., Sankur, B.: Hand biometrics. Image and Vision Computing 24(5), 483–497 (2006)CrossRefGoogle Scholar
  14. 14.
    Connie, T., Jin, A.T.B., Ong, M.G.K., Ling, D.N.C.: An automated palmprint recognition system. Image and Vision Computing 23(5), 501–515 (2005)CrossRefGoogle Scholar
  15. 15.
    Yang, J., Zhang, D., yu Yang, J., Niu, B.: Globally maximizing, locally minimizing: Unsupervised discriminant projection with applications to face and palm biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 650–664 (2007)CrossRefGoogle Scholar
  16. 16.
    Raymer, M., Punch, W., Goodman, E., Kuhn, L., Jain, A.: Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation 4(2), 164–171 (2000)CrossRefGoogle Scholar
  17. 17.
    Siedlecki, W., Sklansky, J.: A note on genetic algorithms for large-scale feature selection. Pattern Recognition Letters 10(5), 335–347 (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intelligent Systems and their Applications 13(2), 44–49 (1998)CrossRefGoogle Scholar
  19. 19.
    Sun, Z., Bebis, G., Miller, R.: Object detection using feature subset selection. Pattern Recognition 37(11), 2165–2176 (2004)CrossRefGoogle Scholar
  20. 20.
    McLachlan, G., Bean, R., Peel, D.: A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18(3), 413–422 (2002)CrossRefGoogle Scholar
  21. 21.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)CrossRefzbMATHGoogle Scholar
  22. 22.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley (2001)Google Scholar
  23. 23.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  24. 24.
    Ferrer, M., Morales, A., Travieso, C., Alonso, J.: Low cost multimodal biometric identification system based on hand geometry, palm and finger print texture. In: 41st Annual IEEE International Carnahan Conference on Security Technology, pp. 52–58 (2007)Google Scholar
  25. 25.
    Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Transactions on Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Amayeh, G., Bebis, G., Erol, A., Nicolescu, M.: Hand-based verification and identification using palm-finger segmentation and fusion. Computer Vision and Image Understanding 113(4), 477–501 (2009)CrossRefGoogle Scholar
  27. 27.
    Mansoor, A., Mumtaz, M., Masood, H., Butt, M., Khan, S.: Personal identification using palmprint and contourlet transform. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 521–530. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    López-Rubio, E.: Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recognition 43(5), 1835–1846 (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Oden, C., Ercil, A., Buke, B.: Combining implicit polynomials and geometric features for hand recognition. Pattern Recognition Letters 24(13), 2145–2152 (2003)CrossRefGoogle Scholar
  30. 30.
    Barber, C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Transactions on Mathematical Software (TOMS) 22(4), 469–483 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(3), 254–266 (1996)CrossRefGoogle Scholar
  32. 32.
    Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and their Application, pp. 14–21. L. Erlbaum Associates Inc (1987)Google Scholar
  33. 33.
    Guo, B., Nixon, M.: Gait feature subset selection by mutual information. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 39(1), 36–46 (2009)CrossRefGoogle Scholar
  34. 34.
    Leung, A., Gong, S.: Online Feature Selection Using Mutual Information for Real-time Multi-view Object Tracking. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 184–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    López-Rubio, E.: Probabilistic self-organizing maps for qualitative data. Neural Networks 23(10), 1208–1225 (2010)CrossRefGoogle Scholar
  36. 36.
    Mansoor, A.B., Masood, H., Mumtaz, M., Khan, S.A.: A feature level multimodal approach for palmprint identification using directional subband energies. Journal of Network and Computer Applications 34(1), 159–171 (2011)CrossRefGoogle Scholar
  37. 37.
    Ferrer, M., Fabregas, J., Faundez, M., Alonso, J., Travieso, C.: Hand geometry identification system performance. In: 43rd Annual International Carnahan Conference on Security Technology, pp. 167–171 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. M. Luque
    • 2
  • D. Elizondo
    • 1
  • E. López-Rubio
    • 2
  • E. J. Palomo
    • 2
  1. 1.Department of Computer TechnologyForsec, De Monfort UniversityLeicesterUnited Kingdom
  2. 2.Department of Computer Languages and Computer ScienceUniversity of MálagaMálagaSpain

Personalised recommendations