Temperature and Heat Flux Dependence/Independence for Heat Equations with Memory

  • Sergei Avdonin
  • Luciano Pandolfi
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 423)


We present and extend our recent results on the relations between temperature and flux for heat equations with memory. The key observation is that we can interpret “independence” as a kind of “controllability” and this suggests the study of controllability of the pair heat-flux in an appropriate functional space.


Heat Flux Heat Equation Asymptotic Estimate Moment Problem Riesz Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avdonin, S.A.: On Riesz bases of exponentials in L 2. Vestnik Leningr. Univ., Ser. Mat., Mekh., Astron. 13, 5–12 (1974) (Russian); English transl. Vestnik Leningr. Univ. Math.  7, 203–211 (1979) MathSciNetGoogle Scholar
  2. 2.
    Avdonin, S., Belinskiy, B., Pandolfi, L.: Controllability of a nonhomogeneous string and ring under time dependent tension. Math. Model. Natur. Phenom. 5, 4–31 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Avdonin, S.A., Ivanov, S.A.: Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, New York (1995)zbMATHGoogle Scholar
  4. 4.
    Avdonin, S.A., Moran, W.: Simultaneous control problems for systems of elastic strings and beams. Systems and Control Letters 44, 147–155 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Avdonin, S., Moran, W.: Ingham type inequalities and Riesz bases of divided differences. Int. J. Appl. Math. Comput. Sci. 11, 101–118 (2001)MathSciNetGoogle Scholar
  6. 6.
    Avdonin, S., Pandolfi, L.: Simultaneous temperature and flux controllability for heat equations with memory, submitted. Politecnico di Torino, Dipartimento di Matematica, Rapporto Interno (3) (2010)Google Scholar
  7. 7.
    Barbu, V., Iannelli, M.: Controllability of the heat equation with memory. Diff. Integral Eq. 13, 1393–1412 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cattaneo, C.: Sulla conduzione del calore. Atti del Seminario Matematico e Fisico dell’Università di Modena 3, 83–101 (1948)MathSciNetGoogle Scholar
  9. 9.
    De Kee, D., Liu, Q., Hinestroza, J.: Viscoelastic (non-fickian) diffusion. The Canada J. of Chemical Engineering 83, 913–929 (2005)CrossRefGoogle Scholar
  10. 10.
    Fabrizio, M., Morro, A.: Mathematical problems in linear viscoelasticity. SIAM Studies in Applied Mathematics, vol. (12). Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    Fu, X., Yong, J., Zhang, X.: Controllability and observability of the heat equation with hyperbolic memory kernel. J. Diff. Equations 247, 2395–2439 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gohberg, I.C., Krejn, M.G.: Opèrateurs linèaires non auto-adjoints dans un espace hilbertien, Dunod, Paris (1971)Google Scholar
  13. 13.
    Gurtin, M.E., Pipkin, A.G.: A general theory of heat conduction with finite wave speed. Arch. Rat. Mech. Anal. 31, 113–126 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Jäckle, J.: Heat conduction and relaxation in liquids of high viscosity. Physica A. 162, 377–404 (1990)CrossRefGoogle Scholar
  15. 15.
    Leugering, G.: Time optimal boundary controllability of a simple linear viscoelastic liquid. Math. Methods in the Appl. Sci. 9, 413–430 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Levitan, B.M., Sargsjan, I.S.: Introduction to spectral theory: selfadjoint ordinary differential operators. In: Translations of Mathematical Monographs, vol. 39. American Mathematical Society, Providence (1975)Google Scholar
  17. 17.
    Loreti, P., Komornik, V.: Fourier series in control theory. Springer, New-York (2005)zbMATHGoogle Scholar
  18. 18.
    Loreti, P., Sforza, D.: Reachability problems for a class of integro-differential equations. J. Differential Equations 248, 1711–1755 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Marchenko, V.A.: Sturm-Liouville operators and applications. Operator Theory: Advances and Applications, vol. 22. Birkhãuser, Basel (1986)zbMATHGoogle Scholar
  20. 20.
    Pandolfi, L.: The controllability of the Gurtin-Pipkin equation: a cosine operator approach. Applied Mathematics and Optim. 52, 143–165 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Pandolfi, L.: Controllability of the Gurtin-Pipkin equation. In: SISSA, Proceedings of Science, PoS(CSTNA2005)015Google Scholar
  22. 22.
    Pandolfi, L.: Riesz systems and controllability of heat equations with memory. Int. Eq. Operator Theory 64, 429–453 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Pandolfi, L.: Riesz systems and moment method in the study of heat equations with memory in one space dimension. Discr. Cont. Dynamical Systems, Ser. B 14, 1487–1510 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Pandolfi, L.: Riesz systems and an identification problem for heat equations with memory. Discr. Cont. Dynamical Systems, Ser. S 4, 745–759 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Pandolfi, L.: On–line input identification and application to Active Noise Cancellation. Annual Rev. Control 34, 245–261 (2010)CrossRefGoogle Scholar
  26. 26.
    Joseph, D.D., Preziosi, L.: Heat waves. Rev. Modern Phys. 61, 41–73 (1989); Addendum to the paper: Heat waves. Rev. Modern Phys.  62, 375–391 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Renardy, M.: Are viscoelastic flows under control or out of control? Systems Control Lett. 54, 1183–1193 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Richards, J.I., Youn, H.: Theory of distributions: a non technical introduction. Cambridge U.P., Cambridge (1990)zbMATHCrossRefGoogle Scholar
  29. 29.
    Sedletskii, A.M.: Biorthogonal decomposition of functions in exponential series on real intervals. Uspekhi Mathematicheskikh Nauk. 37, 51–95 (1982) (Russian); English transl. Russian Math. Surveys,  37, 57–108 (1983) MathSciNetGoogle Scholar
  30. 30.
    Tricomi, F.: Differential Equations. Blackie & Sons, Toronto (1961)zbMATHGoogle Scholar
  31. 31.
    Vinokurov, V.A., Sadovnichii, V.A.: Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary value problem on a segment with a summable potential. Izvestia: Mathematics 64, 47–108 (2000)MathSciNetGoogle Scholar
  32. 32.
    Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of AlaskaFairbanksUSA
  2. 2.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly

Personalised recommendations