Advertisement

Observer-Based Stabilizing Control for a Class of Nonlinear Retarded Systems

  • Alfredo Germani
  • Costanzo Manes
  • Pierdomenico Pepe
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 423)

Abstract

Stabilizing cascade observer-controller schemes for a class of nonlinear retarded systems are presented in this chapter. Conditions for the local and global asymptotic stability of the closed loop system are provided. Such conditions allow the separate design of the observer and of the controller subsystems (separation theorems).

Keywords

Global Asymptotic Stability Separation Theorem Nonlinear Observer Retarded System Nonlinear Delay System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciccarella, G., Dalla Mora, M., Germani, A.: A Luenberger-like observer for nonlinear systems. Int. J. of Control  57(3), 537–556 (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Ciccarella, G., Dalla Mora, M., Germani, A.: Asymptotic linearization and stabilization for a class of nonlinear systems. J. of Optim.Theory and Appl. 84(3) (1995)Google Scholar
  3. 3.
    Dalla Mora, M., Germani, A., Manes, C.: Design of state observers from a drift-observability property. IEEE Trans. on Aut. Control 45(8), 1536–1540 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Di Ciccio, M.P., Bottini, M., Pepe, P., Foscolo, P.U.: Observed-Based Control of a Continuous Stirred Tank Reactor with Recycle Time-Delay. In: 14th IFAC Conf. on Methods and Models in Autom. and Robotics, Miedzydroje, Poland (August 2009)Google Scholar
  5. 5.
    Germani, A., Manes, C., Pepe, P.: Local Asymptotic Stability for Nonlinear State Feedback Delay Systems. Kybernetika 36(1), 31–42 (2000)MathSciNetGoogle Scholar
  6. 6.
    Germani, A., Manes, C., Pepe, P.: An Asymptotic State Observer for a Class of Nonlinear Delay Systems. Kybernetika 37(4), 459–478 (2001)MathSciNetGoogle Scholar
  7. 7.
    Germani, A., Manes, C., Pepe, P.: A New Approach to State Observation of Nonlinear Systems with Delayed Output. IEEE Trans. on Aut. Control 47(1), 96–101 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Germani, A., Manes, C., Pepe, P.: Input-Output Linearization with Delay Cancellation for Nonlinear Delay Systems: the Problem of the Internal Stability. Int. J. of Robust and Nonlinear Control 13(9), 909–937 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Germani, A., Pepe, P.: A State Observer for a Class of Nonlinear Systems with Multiple Discrete and Distributed Time Delays. European J. of Control 11(3), 196–205 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Germani, A., Manes, C., Pepe, P.: Separation Theorems for a Class of Retarded Nonlinear Systems. In: IFAC-Papers OnLine, Workshop on Time-Delay Systems, Praha (2010)Google Scholar
  11. 11.
    Hua, C., Guan, X., Shi, P.: Robust stabilization of a class of nonlinear time-delay systems. Appl. Math. and Comp. 155, 737–752 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jankovic, M.: Control Lyapunov-Razumikhin Functions and Robust Stabilization of Time Delay Systems. IEEE Trans. on Aut. Control 46(7), 1048–1060 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Karafyllis, I., Jiang, Z.-P.: Necessary and Sufficient Lyapunov-Like Conditions for Robust Nonlinear Stabilization. ESAIM: Control, Optimisation and Calculus of Variations 16, 887–928 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kazantzis, N., Wright, R.: Nonlinear observer design in the presence of delayed output measurements. Systems & Control Letters 54(9), 877–886 (2005)Google Scholar
  15. 15.
    Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Pub., Dordrecht (1999)zbMATHGoogle Scholar
  16. 16.
    Koshkouei, A., Burnham, K.: Discontinuous observers for non-linear time-delay systems. Int. J. of Systems Science 40(4), 383–392 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lien, C.-H.: Global Exponential Stabilization for Several Classes of Uncertain Nonlinear Systems with Time-Varying Delay. Nonlin. Dynamics and Systems Theory 4(1), 15–30 (2004)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Márquez-Martinez, L.A., Moog, C.H., Velasco-Villa, M.: Observability and observers for nonlinear systems with time delays. Kybernetika 38(4), 445–456 (2002)MathSciNetGoogle Scholar
  19. 19.
    Márquez-Martinez, L.A., Moog, C.H.: Input-output feedback linearization of time-delay systems. IEEE Trans. on Aut. Control 49(5), 781–785 (2004)CrossRefGoogle Scholar
  20. 20.
    Oguchi, T., Watanabe, A., Nakamizo, T.: Input-Output Linearization of Retarded Non-linear Systems by Using an Extension of Lie Derivative. Int. J. of Control 75(8), 582–590 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Palumbo, P., Panunzi, S., De Gaetano, A.: Qualitative behavior of a family of delay differential models of the glucose insulin system. Discrete and Continuous Dynamical Systems-Series B 7, 399–424 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Palumbo, P., Pepe, P., Panunzi, S., De Gaetano, A.: Observer-based closed-loop control of plasma glycemia. In: 48th IEEE Conf. on Decision and Control (CDC 2009), Shanghai, China (December 2009)Google Scholar
  23. 23.
    Pepe, P.: Preservation of the Full Relative Degree for a Class of Delay Systems under Sampling. ASME J. of Dynamic Systems, Meas. and Control 125(2), 267–270 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pepe, P., Jiang, Z.-P.: A Lyapunov-Krasovskii Methodology for ISS and iISS of Time-Delay Systems. Systems and Control Letters 55(12), 1006–1014 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Zhang, X., Cheng, Z.: Global stabilization of a class of time-delay nonlinear systems. Int. J. of Systems Science 36(8), 461–468 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zhang, X., Zhang, C., Cheng, Z.: Asymptotic stabilization via output feedback for nonlinear systems with delayed output. Int. J. of Systems Science 37(9), 599–607 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Alfredo Germani
    • 1
  • Costanzo Manes
    • 1
  • Pierdomenico Pepe
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversitá degli Studi dell’AquilaL’AquilaItaly

Personalised recommendations