A Hybrid Method for the Analysis of Non-uniformly Sampled Systems

  • Laurentiu Hetel
  • Alexandre Kruszewski
  • Jean-Pierre Richard
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 423)


In this chapter we propose a method for the analysis of sampled-data systems with sampling jitter. We consider that the sampling interval is unknown and time-varying and we provide a method for estimating the Lyapunov exponent. The proposed method is hybrid, in the sense that it combines continuous-time models (based on time delay systems) with polytopic embedding methods, specific to discrete-time approaches. The approach exploits the fact that the command is a piecewise constant signal and leads to less conservative stability conditions with respect to the existing literature. Using geometrical arguments, a lower bound of the Lyapunov exponent can be expressed as a generalized eigenvalue problem.


Lyapunov Exponent Linear Matrix Inequality Model Predictive Control Network Control System Quadratic Lyapunov Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balluchi, A., Murrieri, P., Sangiovanni-Vincentelli, A.L.: Controller Synthesis on Non-uniform and Uncertain Discrete–Time Domains. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 118–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cloosterman, M.B.G., Hetel, L., van de Wouw, N., Heemels, W.P.M.H., Daafouz, J., Nijmeijer, H.: Controller synthesis for networked control systems. Automatica 46(10), 1584–1594 (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Donkers, M.C.F., Hetel, L., Heemels, W.P.M.H., van de Wouw, N., Steinbuch, M.: Stability Analysis of Networked Control Systems Using a Switched Linear Systems Approach. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 150–164. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Felicioni, F.E., Junco, S.J.: A Lie algebraic approach to design of stable feedback control systems with varying sampling rate. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 4881–4886 (July 2008)Google Scholar
  6. 6.
    Fridman, E., Seuret, A., Richard, J.-P.: Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fujioka, H.: Stability analysis for a class of networked / embedded control systems: Output feedback case. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 4210–4215 (July 2008)Google Scholar
  8. 8.
    Gielen, R., Olaru, S., Lazar, M.: On polytopic embeddings as a modeling framework for networked control systems. In: Proc. 3rd Int. Workshop on Assessment and Future Directions of Nonlinear Model Predictive Control, Pavia, Italy (2008)Google Scholar
  9. 9.
    Hetel, L., Daafouz, J., Iung, C.: Stabilization of arbitrary switched linear systems with unknown time varying delays. IEEE Transactions on Automatic Control (2006)Google Scholar
  10. 10.
    Hetel, L., Daafouz, J., Iung, C.: LMI control design for a class of exponential uncertain systems with application to network controlled switched systems. In: Proceedings of 2007 IEEE American Control Conference (2007)Google Scholar
  11. 11.
    Hetel, L., Kruszewski, A., Perruquetti, W., Richard, J.P.: Discrete and intersample analysis of systems with aperiodic sampling. IEEE Transactions on Automatic Control (2011)Google Scholar
  12. 12.
    Kao, C.-Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays. Automatica 40(8), 1429–1434 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lofberg, J.: Yalmip: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004),
  14. 14.
    Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Transactions on Automatic Control 52(6), 1109–1112 (2007) ISSN 0018-9286MathSciNetCrossRefGoogle Scholar
  15. 15.
    Naghshtabrizi, P., Hespanha, J.P.: Stability of network control systems with variable sampling and delays. In: Singer, A., Hadjicostis, C. (eds.) Proc. of the Forty-Fourth Annual Allerton Conference on Communication, Control, and Computing (September 2006)Google Scholar
  16. 16.
    Naghshtabrizi, P., Teel, A., Hespanha, J.P.: Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems and Control Letters 57(5), 378–385 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Oishi, Y., Fujioka, H.: Stability and stabilization of aperiodic sampled-data control systems using robust linear matrix inequalities. Technical Report of the Nanzan Academic Society Information Sciences and Engineering (2009)Google Scholar
  18. 18.
    Sala, A.: Computer control under time-varying sampling period: An LMI gridding approach. Automatica 41(12), 2077–2082 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Skaf, J., Boyd, S.: Analysis and synthesis of state-feedback controllers with timing jitter. IEEE Transactions on Automatic Control 54(3), 652–657 (2009) ISSN 0018-9286MathSciNetCrossRefGoogle Scholar
  20. 20.
    Walsh, G.C., Ye, H., Bushnell, L.: Stability analysis of networked control systems. IEEE Transactions on Control Systems Technology, 2876–2880 (1999)Google Scholar
  21. 21.
    Wittenmark, B., Nilsson, J., Torngren, M.: Timing problems in real-time control systems. In: Proceedings of the 1995 American Control Conference, Seattle, WA, USA (1995)Google Scholar
  22. 22.
    Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems. IEEE Control Systems Magazine, 84–99 (2001)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Laurentiu Hetel
    • 1
  • Alexandre Kruszewski
    • 1
  • Jean-Pierre Richard
    • 2
  1. 1.LAGIS, FRE CNRS 3303Ecole Centrale de LilleVilleneuve d’Ascq CedexFrance
  2. 2.INRIA Non-A; LAGIS, FRE CNRS 3303Ecole Centrale de LilleVilleneuve d’Ascq CedexFrance

Personalised recommendations