Local Asymptotic Stability Conditions for the Positive Equilibrium of a System Modeling Cell Dynamics in Leukemia

  • Hitay Özbay
  • Catherine Bonnet
  • Houda Benjelloun
  • Jean Clairambault
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 423)


A distributed delay system with static nonlinearity has been considered in the literature to study the cell dynamics in leukemia. In this chapter local asymptotic stability conditions are derived for the positive equilibrium point of this nonlinear system. The stability conditions are expressed in terms of inequalities involving parameters of the system. These inequality conditions give guidelines for development of therapeutic actions.


Acute Myeloid Leukemia Chronic Myelogenous Leukemia Acute Myelogenous Leukemia Positive Equilibrium Cell Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adimy, M., Crauste, F., El Abdllaoui, A.: Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biological Systems 16(3), 395–424 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Adimy, M., Crauste, F., El Abdllaoui, A.: Boundedness and Lyapunov function for a nonlinear system of hematopoietic stem cell dynamics. C. R. Acad. Sci. Paris, Ser. I 348, 373–377 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Adimy, M., Crauste, F., Ruan, S.: A Mathematical Study of the Hematopoiesis Process with Applications to Chronic Myelogenous Leukemia. SIAM J. Appl. Math. 65, 1328–1352 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bonnet, D., Dick, J.E.: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine 3, 730–737 (1997)CrossRefGoogle Scholar
  5. 5.
    Colijn, C., Mackey, M.C.: A mathematical model of hematopoiesis: I. Periodic chronic myelogenous leukemia. J. Theoretical Biology 237, 117–132 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Foley, C., Mackey, M.C.: Dynamic hematological disease: a review. J. Mathematical Biology 58, 285–322 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Huntly, B.J.P., Gilliland, D.G.: Leukemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews: Cancer 5, 311–321 (2005)CrossRefGoogle Scholar
  8. 8.
    Kold-Andersen, L., Mackey, M.C.: Resonance in periodic chemotherapy: A case study of acute myelogenous leukemia. J. Theoretical Biology 209, 113–130 (2001)CrossRefGoogle Scholar
  9. 9.
    Mackey, M.C.: Unified hypothesis for the origin of aplastic anaemia and periodic hematopoiesis. Blood 51, 941–956 (1978)Google Scholar
  10. 10.
    Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)CrossRefGoogle Scholar
  11. 11.
    Mackey, M.C., Ou, C., Pujo-Menjouet, L., Wu, J.: Periodic Oscillations of Blood Cell Populations in Chronic Myelogenous Leukemia. SIAM J. Appl. Math. 38, 166–187 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Marie, J.P.: Private communication, Hôpital St. Antoine, Paris, France (July 2010)Google Scholar
  13. 13.
    Niculescu, S.-I., Kim, P.S., Gu, K., Lee, P.P., Levy, D.: Stability Crossing Boundaries of Delay Systems Modeling Immune Dynamics in Leukemia. Discrete and Continuous Dynamical Systems. Series B 13, 129–156 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Özbay, H., Bonnet, C., Clairambault, J.: Stability Analysis of Systems with Distributed Delays and Application to Hematopoietic Cell Maturation Dynamics. In: Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 2008, pp. 2050–2055 (2008)Google Scholar
  15. 15.
    Özbay, H., Benjelloun, H., Bonnet, C., Clairambault, J.: Stability Conditions for a System Modeling Cell Dynamics in Leukemia. In: Preprints of IFAC Workshop on Time Delay Systems, TDS 2010, Prague, Czech Republic (June 2010)Google Scholar
  16. 16.
    Özbay, H., Bonnet, C., Benjelloun, H., Clairambault, J.: Global Stability Analysis of a System Modeling Cell Dynamics in AML. In: Abstracts of the 3rd Conference on Computational and Mathematical Population Dynamics (CMPD3), Bordeaux, France, June 2010, p. 186 (2010)Google Scholar
  17. 17.
    Özbay, H., Bonnet, C., Benjelloun, H., Clairambault, J.: Absolute Stability of a System with Distributed Delays Modeling Cell Dynamics in Leukemia. In: Proc. of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), Budapest, Hungary, July 2010, pp. 989–992 (2010)Google Scholar
  18. 18.
    Özbay, H., Bonnet, C., Benjelloun, H., Clairambault, J.: Stability Analysis of a Distributed Delay System Modeling Cell Dynamics in Leukemia (March 2010) (submitted for publication) (revised January 2011)Google Scholar
  19. 19.
    Peixoto, D., Dingli, D., Pacheco, J.M.: Modelling hematopoiesis in health and disease. Mathematical and Computer Modelling (2010), doi:10.1016/j.mcm.2010.04.013Google Scholar
  20. 20.
    Qu, Y., Wei, J., Ruan, S.: Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D 239, 2011–2024 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Hitay Özbay
    • 1
  • Catherine Bonnet
    • 2
  • Houda Benjelloun
    • 3
  • Jean Clairambault
    • 4
  1. 1.Dept. of Electrical and Electronics Eng.Bilkent Univ.AnkaraTurkey
  2. 2.INRIA Saclay - Île-de-France, Parc Orsay UniversitéOrsay CedexFrance
  3. 3.Ecole Centrale ParisParisFrance
  4. 4.INRIA Paris-RocquencourtLe Chesney, CedexFrance

Personalised recommendations