Skip to main content

The Kinetics of Biological Systems

  • Chapter
  • First Online:
Biophysics
  • 5874 Accesses

Abstract

This section provides an introduction to the basic ideas of systems theory as applied to living organisms which is an important part of theoretical biophysics. Originally, thermodynamics, as a universal theory of energetic basis of all movements in nature, and kinetics, as a theory of time courses of predicted processes, were considered as two separate theoretical approaches. Thermodynamics answers the questions: what are the reasons for, the driving force of, and the direction of a movement, and what, finally, is the equilibrium situation which will be arrived at if the energetic potentials are equilibrated? Kinetics, on the other hand, just studies the course of a given reaction, its time constants and rates, possible stationary states, stabilities, and oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberghina L, Westerhoff HV (eds) (2005) Systems biology. Definitions and perspectives. Springer, Berlin

    Google Scholar 

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC, Boca Raton, Mathematical & computational biology

    MATH  Google Scholar 

  • Ancliff M, Park JM (2010) Optimal mutation rates in dynamic environments: the Eigen model. Phys Rev E 82:21904

    Article  ADS  Google Scholar 

  • Banerjee B, Chakrabarti BK (eds) (2008) Models of brain and mind. Physical computational and psychological approaches, vol 168, Progress in brain research. Elsevier, Amsterdam

    Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186

    Article  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input; II. Inhomogeneous synaptic input and network properties. Biol Cybern 95(1):97

    Article  MATH  Google Scholar 

  • Cessac B, Samuelides M (2007) From neuron to neural network dynamics. Eur Phys J 142:7, Special topics

    Google Scholar 

  • Dyson F (1999) Origins of life, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwiss 58:465

    Article  ADS  Google Scholar 

  • Eigen M (1992) Steps toward life. Oxford University Press, Oxford

    Google Scholar 

  • Faugeras O, Touboul J et al (2009) A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front Comput Neurosci 3:1

    Article  Google Scholar 

  • Flanders M (2011) What is the biological basis of sensorimotor integration? Biol Cybern 104:1

    Article  MathSciNet  MATH  Google Scholar 

  • Gabrielsson J, Weiner D (2006) Pharmacokinetics and pharmacodynamics. Data analysis, concepts and applications, 4th edn. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Gause GF (1935) Experimentelle Untersuchungen über die Konkurrenz zwischen Paramecium caudatum und Paramecium aurelia. Archiv Protistenkunde 84:207

    Google Scholar 

  • Ginzburg L, Colyvan M (2004) Ecological orbits. Oxford University Press, New York

    Google Scholar 

  • Haken H (2010) Information and self-organization: a macroscopic approach to complex systems, Springer series in synergetics. Springer, Berlin

    Google Scholar 

  • Hanrahan G (2011) Artificial neural networks in biological and environmental analysis. Analytical chemistry series. CRC Press, Boca Raton

    Book  Google Scholar 

  • Hassenstein B (1966) Kybernetik und biologische Forschung. In: Gessner F (ed) Handbuch der Biologie, 1. Frankfurt a.M, p 529

    Google Scholar 

  • Heinrich R, Schuster S (1996) Modeling of metabolic systems. Structure, control and optimality. Chapman and Hall, New York

    Google Scholar 

  • Jeffries C (1989) Mathematical modeling in ecology. A workbook for students. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Klipp E, Liebermeister W et al (2009) Systems biology, a textbook. Wiley-VCH, Weinheim

    Google Scholar 

  • Knorre WA (1981) Pharmakokinetik. Akademie-Verlag, Berlin

    Google Scholar 

  • Koch I, Reisig W et al (eds) (2011) Modeling in systems biology. The petri net approach. Springer, London

    MATH  Google Scholar 

  • Lima-Mendez G, Van Helden J (2009) The powerful law of the power law and other myths in network biology. Mol Biosyst 5:1482

    Article  Google Scholar 

  • Ma’ayan A (2009) Insights into the organization of biochemical regulatory networks using graph theory analyses. J Biol Chem 284:5451

    Article  Google Scholar 

  • Maini PK, Othmer HG (eds) (2000) Mathematical models for biological pattern formation. Springer, New York

    MATH  Google Scholar 

  • Meinhardt H (2008) Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr Top Dev Biol 81:1

    Article  Google Scholar 

  • Meinhardt H (2009) Models for the generation and interpretation of gradients. Cold Spring Harb Perspect Biol 1:a001362

    Article  Google Scholar 

  • Murray JD (2003) Mathematical biology, 3rd edn. Springer, New York

    MATH  Google Scholar 

  • Obermayer B, Frey E (2010) Error thresholds for self- and cross-specific enzymatic replication. J Theor Biol 267:653

    Article  Google Scholar 

  • Okubo A, Levin SA (2010) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer, New York

    Google Scholar 

  • Palmer T (1995) Understanding enzymes. Prentice Hall, London

    Google Scholar 

  • Prettejohn BJ, Berryman MJ et al (2011) Methods for generating complex networks with selected structural properties for simulations: a review and tutorial for neuroscientists. Front Comput Neurosci 5:1

    Article  Google Scholar 

  • Rode BM, Fitz D et al (2007) The first steps of chemical evolution towards the origin of life. Chem Biodivers 4:2674

    Article  Google Scholar 

  • Rowland M, Tozer TN (2011) Clinical pharmacokinetics and pharmacodynamics. Concepts and applications, 4th edn. Wolters Kluwer, Philadelphia

    Google Scholar 

  • Rudall BH (2004) Contemporary systems and cybernetics – new advances in biocybernetics. Kybernetes 33:1084

    Article  MathSciNet  Google Scholar 

  • Thom R (1969) Topological models in biology. Topology 8:313

    Article  MathSciNet  MATH  Google Scholar 

  • Tlusty TA (2010) Colorful origin for the genetic code: information theory, statistical mechanics and the emergence of molecular codes. Phys Life Rev 7:362

    Article  ADS  Google Scholar 

  • Turchin P (2003) Complex population dynamics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37

    Article  ADS  Google Scholar 

  • Wartlick O, Kicheva A et al (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a001255

  • Zeeman EC (1976) Catastrophe theory. Sci Am 234:65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glaser .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glaser, R. (2012). The Kinetics of Biological Systems. In: Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25212-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25212-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25211-2

  • Online ISBN: 978-3-642-25212-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics