Skip to main content

Energetics and Dynamics of Biological Systems

  • Chapter
  • First Online:
Biophysics
  • 6129 Accesses

Abstract

While in the previous part of this book basic physical principles are explained governing the formation of molecular and supramolecular biological structures, we will come now to various functions of cells, tissues, organs, and organisms. For this, of course, molecular considerations form an important fundament, but at the same time, phenomenological parameters, like concentration, volume, viscosity, dielectric constants, conductivity, etc., are used which in fact are defined for large and homogeneous systems. In this way, we begin to enter the field of the so-called continuum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborn BK (2005) Zoological physics. Springer, Berlin

    Google Scholar 

  • Alexander RMcN (2003) Principles of animal locomotion. Princeton University Press, Princeton

    Google Scholar 

  • Anishchenko V, Astakhov V et al (2006) Dynamics of chaotic and stochastic systems, 2nd edn. Springer, Berlin

    Google Scholar 

  • Amman D (1986) Ion-selective microelectrodes. Springer, Berlin

    Google Scholar 

  • Azuma A (1992) The biokinetics of flying and swimming. Springer, Tokyo

    Google Scholar 

  • Barry PH (1998) Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations. Biophys J 74:2903

    Google Scholar 

  • Bashford CL, Pasternak CA (1986) Plasma membrane potential of some animal cells is generated by ion pumping, not by ion gradients. Trends Biochem Sci 11:113

    Google Scholar 

  • Bejan A, Lorente S (2008) Design with constructal theory. Wiley, Hoboken

    Google Scholar 

  • Bejan A, Marden JH (2009) The constructal unification of biological and geophysical design. Phys Life Rev 6:85

    ADS  Google Scholar 

  • Bels VL, Gasc JP et al (eds) (2003) Vertebrate biomechanics and evolution, Experimental biology Reviews. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9:323

    Google Scholar 

  • Bingeli R, Weinstein R (1986) Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 123:377

    Google Scholar 

  • Carter DR, Beaupré GS (2001) Skeletal function and form. Mechanobiology of skeletal development, aging, and regeneration. Cambridge University Press, Cambridge

    Google Scholar 

  • Cevc G (1990) Membrane electrostatics. Biochim Biophys Acta 1031:311

    Google Scholar 

  • Chein S, Chen PCY et al (2008) An introductory text to bioengineering, vol 4, Advanced series in biomechanics. World Scientific Publishers, Singapore

    Google Scholar 

  • Clay JR (2005) Axonal excitability revisited. Prog Biophys Mol Biol 88:59

    Google Scholar 

  • Da Silva JKL, Garcia GJM et al (2006) Allometric scaling laws of metabolism. Phys Life Rev 3:229

    ADS  Google Scholar 

  • Dukhin SS, Zimmermann R et al (2004) Intrinsic charge and Donnan potentials of grafted polyelectrolyte layers determined by surface conductivity data. J Colloid Interface Sci 274:309

    Google Scholar 

  • Evtodienko VY, Antonenko YN et al (1998) Increase of local hydrogen ion gradient near bilayer lipid membrane under the conditions of catalysis of proton transfer across the interface. FEBS Lett 425:222

    Google Scholar 

  • Faller LD (2008) Mechanistic studies of sodium pump. Arch Biochem Biophys 476:12

    Google Scholar 

  • Feistel R, Ebeling W (2011) Physics of self-organization and evolution. Wiley-VCH, Heidelberg

    Google Scholar 

  • Fortune ES (2006) The decoding of electrosensory systems. Curr Opin Neurobiol 16:474

    Google Scholar 

  • Fraser JA, Huang CLH (2007) Quantitative techniques for steady-state calculation and dynamic integrated modeling of membrane potential and intracellular ion concentrations. Prog Biophys Mol Biol 94:336

    Google Scholar 

  • Fry CH, Langley SEM (2005) Ion-selective electrodes for biological systems. Taylor & Francis, e-Library

    Google Scholar 

  • Fuhr G, Hagedorn R (1996) Cell electrorotation. In: Lynch PT, Davey MR (eds) Electrical manipulation of cells. Chapman & Hall, New York, p 38

    Google Scholar 

  • Fuhr G, Zimmermann U et al (1996) Cell motion in time-varying fields: principles and potential. In: Zimmermann U, Neil GA (eds) Electromanipulation of cells. CRC Press, Boca Raton, p 259

    Google Scholar 

  • Fullerton GD, Kanal KM et al (2006) On the osmotically unresponsive water compartment in cells. Cell Biol Int 30:74

    Google Scholar 

  • Fullerton GD, Cameron IL (2007) Water compartments in cells. Methods Enzymol 428:1

    Google Scholar 

  • Fung YC (1984) Biodynamics. Springer, New York

    Google Scholar 

  • Fung YC (1993) Biomechanics, 2nd edn. Springer, New York

    Google Scholar 

  • Gabriel C, Gabriel S et al (1996) The dielectric-properties of biological tissues. I. Literature survey. Phys Med Biol 41:2231

    Google Scholar 

  • Gadsby DC (2009) Ion channels versus ion pumps: the principal difference, in principle. Nat Rev Mol Cell Biol 10:344

    Google Scholar 

  • Garlid KD (2000) The state of water in biological systems. Int Rev Cytol-A: Surv Cell Biol 192:281

    Google Scholar 

  • Gimsa J, Wachner D (1999) A polarization model overcoming the geometric restrictions of the Laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential. Biophys J 77:1316

    Google Scholar 

  • Gimsa J, Wachner D (1998) A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential. Biophys J 75:1107

    Google Scholar 

  • Glansdorff P, Prigogine I (1985) Thermodynamic theory of structure, stability and fluctuations. Wiley Interscience, London

    Google Scholar 

  • Glaser R (1989) Grundriß der Biomechanik, 2nd edn. Akademie-Verlag, Berlin

    Google Scholar 

  • Glaser R (1996) The electric properties of the membrane and the cell surface. In: Zimmermann U, Neil GA (eds) Electromanipulation of cells. CRC Press, Boca Raton

    Google Scholar 

  • Glaser R, Brumen M et al (1980) Stationäre Ionenzustände menschlicher Erythrozyten. Biol Zbl 99:429

    Google Scholar 

  • Glaser R, Donath J (1984) Stationary ionic states in human red blood cells. Bioelectrochem Bioenerg 13:71

    Google Scholar 

  • Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 27:37

    Google Scholar 

  • Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632

    Google Scholar 

  • Haken H (2010) Information and self-organization: a macroscopic approach to complex systems, Springer series in synergetics. Springer, Berlin

    Google Scholar 

  • Hertel U (1963) Struktur, Form, Bewegung, Krauskopf, Mainz

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500

    Google Scholar 

  • Holder DS (ed) (2005) Electrical impedance tomography: methods, history and applications, Series in medical physics and biomedical Engineering. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Hosford WF (2009) Mechanical behavior of materials, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Huxley A (2002) From overshoot to voltage clamp. Trends Neurosci 25:553

    Google Scholar 

  • Jaffe LF (1979) Control of development by ionic currents. In: Cone RA, Dowling J (eds) Membrane transduction mechanisms. Raven, New York

    Google Scholar 

  • Katchalsky A, Curran PF (1965) Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge

    Google Scholar 

  • Kjelstrup S, Bedeaux D (2008) Non-equilibrium thermodynamics of heterogeneous systems, vol 16, Series on advances in statistical mechanics. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  • Kolb JF, Kono S et al (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172

    Google Scholar 

  • Kontturi K, Murtomaki L et al (2008) Ionic transport processes: in electrochemistry and membrane science. Oxford University Press, Oxford

    Google Scholar 

  • Kuyucak S, Bastug T (2003) Physics of ion channels. J Biol Phys 29:429

    Google Scholar 

  • Läuger P (1991) Electrogenic ion pumps. Sinauer Associates, Sunderland

    Google Scholar 

  • Lerche D, Bäumler H (1984) Moderate heat treatment of only red blood cells slows down the rate of RBC-RBC aggregation in plasma. Biorheology 21:393

    Google Scholar 

  • Leyton L (1975) Fluid behaviour in biological systems. Clarendon, Oxford

    Google Scholar 

  • Lipowsky R, Klumpp S (2005) ‘Life is motion’: multiscale motility of molecular motors. Phys A Stat Mech Its Appl 352:53

    Google Scholar 

  • Luckey M (2008) Structural biology with biochemical and biophysical foundations. Cambridge University Press, Cambridge

    Google Scholar 

  • Lynch PT, Davey MR (eds) (1996) Electrical manipulation of cells. Chapman & Hall, New York

    Google Scholar 

  • MacGinitie LA (1995) Streaming and piezoelectric potentials in connective tissues. Adv Chem Ser 250:125

    Google Scholar 

  • MacKinnon R (2003) Potassium channels. Minireview. FEBS Lett 555:62

    Google Scholar 

  • Mahmud G et al (2009) Directing cell motions on micropatterned ratchets. Nat Phys 5:606

    Google Scholar 

  • Martin C, Bhatt K et al (2001) Shaping in plant cells. Curr Opin Plant Biol 4:540

    Google Scholar 

  • Martínez-Reina J, García-Aznar JM et al (2009) A bone remodelling model including the directional activity of BMUs. Biomech Model Mechanobiol 8:111

    Google Scholar 

  • McCaig CD, Rajnicek AM et al (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943

    Google Scholar 

  • McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5:1

    MathSciNet  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147–148:214

    Google Scholar 

  • Nigg BN, Herzog W (eds) (2007) Biomechanics of the musculo-skeletal system, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. The University of Chicago Press, Chicago

    Google Scholar 

  • Nuccitelli R, Nuccitelli P et al (2008) Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen 16:432

    Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Google Scholar 

  • Okada Y (2004) Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochem Biophys 41:233

    Google Scholar 

  • Oomens C, Brekelmans M et al (2009) Biomechanics. Concept and computation, Cambridge texts in biomedical engineering. Cambridge University Press, Cambridge

    Google Scholar 

  • Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley

    Google Scholar 

  • Overbeek JTG (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6:58

    Google Scholar 

  • Owens RGA (2006) New microstructure-based constitutive model for human blood. J Non-Newtonian Fluid Mech 140:57

    MATH  Google Scholar 

  • Özkaya N, Nordin M (1999) Fundamentals of biomechanics. Equilibrium, motion, and deformation, 2nd edn. Springer, New York

    Google Scholar 

  • Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin

    Google Scholar 

  • Penzlin H (1991) Lehrbuch der Tierphysiologie, 5th edn. Fischer Verlag, Jena

    Google Scholar 

  • Peters RC, Eeuwes LBM et al (2007) On the electrodetection threshold of aquatic vertebrates with ampullary or mucous gland electroreceptor organs. Biol Rev 82:361

    Google Scholar 

  • Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32:933

    Google Scholar 

  • Pohl P, Saparov SM et al (1998) The size of the unstirred layer as a function of the solute diffusion coefficient. Biophys J 75:1403

    Google Scholar 

  • Prat H, Roberge L (1960) Variations de la thermogenèse en fonction du vieillissement chez la souris. Rev Can Biol 19:80

    Google Scholar 

  • Prigogine I (1967) Introduction to thermodynamics of irreversible processes, 3rd edn. Wiley Interscience, New York

    Google Scholar 

  • Reilly JP (1998) Applied bioelectricity. From electrical stimulation to electropathology. Springer, New York

    Google Scholar 

  • Riu PJ, Rosell J et al (eds) (1999) Electrical bioimpedance methods. Ann N Y Acad Sci 873:1

    Google Scholar 

  • Roux B, Allen T et al (2004) Theoretical and computational models of biological ion channels. Q Rev Biophys 37:15

    Google Scholar 

  • Schmidt-Nielsen K (1999) Scaling. Why is animal size so important. Cambridge University Press, Cambridge

    Google Scholar 

  • Schnakenberg J (1981) Thermodynamic network analysis of biological systems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Schneck DJ (ed) (1980) Biofluid mechanics. Plenum, New York

    Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147

    Google Scholar 

  • Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev Dyn 202:101

    Google Scholar 

  • Skalak R, Chien S (eds) (1987) Handbook of bioengineering. McGraw-Hill, New York

    Google Scholar 

  • Starke-Peterkovic T, Turner N et al (2005) Electric field strength of membrane lipids from vertebrate species membrane lipid composition and Na+K+ATPase molecular activity. Am J Physiol 288:R663

    Google Scholar 

  • Stein WD (1990) Channels, carriers, and pumps. An introduction to membrane transport. Academic, San Diego

    Google Scholar 

  • Sukhorukov VL, Mussauer H et al (1998) The effect of electrical deformation forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity media. J Membr Biol 163:235

    Google Scholar 

  • Sun DD, Guo XE et al (2004) The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. J Biomech Eng 126:6

    Google Scholar 

  • Syganov A, von Klitzing E (1999) (In)validity of the constant field and constant currents assumptions in theories of ion transport. Biophys J 76:768

    Google Scholar 

  • Talbot L, Berger SA (1974) Fluid-mechanical aspects of the human circulation. Am Sci 62:671–682

    ADS  Google Scholar 

  • Toyoshima C, Nakasako M et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 26 Å resolution. Nature 405:647

    ADS  Google Scholar 

  • Ussing HH (1949) The distinction by means of tracers between active transport and diffusion. The transfer of iodide across the isolated frog skin. Acta Physiol Scand 19:43

    Google Scholar 

  • Varma R, Selman JR (1991) Characterization of electrodes and electrochemical processes. Wiley, New York

    Google Scholar 

  • Videler J (1993) Fish swimming. Chapman and Hall, London

    Google Scholar 

  • Vogel S (1994) Life in moving fluids. The physical biology of flow, 2nd edn. Princeton University Press, New Jersey

    Google Scholar 

  • Waite L, Fine J (2007) Applied biofluid mechanisms. McGraw Hill, New York

    Google Scholar 

  • Wang ET, Yin YL et al (2003) Physiological electric fields control the G(1)/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. FASEB J 17:U26

    Google Scholar 

  • Webb PW, Weihs D (eds) (1983) Fish – biomechanics. Praeger, New York

    Google Scholar 

  • West GB, Brown JH (2004) Life’s universal scaling laws. Phys Today 57:36

    Google Scholar 

  • Wolff J (1986) Das Gesetz der Transformation der Knochen. (1892) (The law of bone remodeling), (trans: Marquet P, Furlong R). Springer, New York

    Google Scholar 

  • Zhou S-A, Uesaka M (2009) An analysis of ion channels in time-varying fields by the generalized Poisson-Nernst-Planck theory. Int J Appl Electromagn Mech 29:25

    Google Scholar 

  • Ziemann F, Radler J et al (1994) Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys J 66:2210

    Google Scholar 

  • Zimmermann U, Rüger S et al (2010) Effects of environmental parameters and irrigation on the turgor pressure of banana plants measured using the non-invasive, online monitoring leaf patch clamp pressure probe. Plant Biol 12:424

    Google Scholar 

  • Zimmermann U, Schneider H et al (2004) Water ascent in tall trees: does evolution of land plants rely on a highly metastable state? New Phytol 162:575

    Google Scholar 

  • Zotin AI (1990) Thermodynamic bases of biological processes: physiological reactions and adaptations. DeGruyter, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Glaser .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glaser, R. (2012). Energetics and Dynamics of Biological Systems. In: Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25212-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25212-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25211-2

  • Online ISBN: 978-3-642-25212-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics