Molecular Structure of Biological Systems

Chapter

Abstract

It is the intention of this section to familiarize the reader with some specific physical properties of biological systems on the molecular level. The overriding theme of this section is the controversy of thermal fluctuation against the forces of molecular orientation and organization.

Keywords

Boltzmann Equation Electric Field Strength Electrical Double Layer Biological Membrane Thermal Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bauer J (ed) (1994) Cell electrophoresis. CRC Press, Boca RatonGoogle Scholar
  2. Benz R, Conti F (1986) Effects of hydrostatic pressure on lipid bilayer membranes. Biophys J 50:91, and 99CrossRefGoogle Scholar
  3. Blumenfeld LA, Tikhonov AN (1994) Biophysical thermodynamics of intracellular processes. Springer, BerlinCrossRefGoogle Scholar
  4. Butt HJ, Graf K et al (2006) Physics and chemistry of interfaces, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  5. Cevc G (1990) Membrane electrostatics. Biochim Biophys Acta 1031:311CrossRefGoogle Scholar
  6. Chen YW, Ding F et al (2008) Protein folding: then and now. Arch Biochem Biophys 469:4CrossRefGoogle Scholar
  7. Curtis RA, Lue L (2006) A molecular approach to bioseparations: protein-protein and protein-salt interactions. Chem Eng Sci 61:907CrossRefGoogle Scholar
  8. Devaux P, Herrmann A (eds) (2011) Transmembrane dynamics of lipids, Wiley series in protein and peptide science. Wiley, HobokenGoogle Scholar
  9. Dillon PF et al (2006) Molecular shielding of electric field complex dissociation. Biophys J 901:1432CrossRefGoogle Scholar
  10. Donath E, Voigt A (1986) Electrophoretic mobility of human erythrocytes. Theory and experimental applicability. Biophys J 49:493CrossRefGoogle Scholar
  11. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwiss 58:465ADSCrossRefGoogle Scholar
  12. Eigen M (1992) Steps toward life. Oxford University Press, OxfordGoogle Scholar
  13. Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578ADSCrossRefGoogle Scholar
  14. Eyal E, Bahar I (2008) Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models. Biophys J 94:3424CrossRefGoogle Scholar
  15. Frauenfelder H, McMahon B (1998) Dynamics and function of proteins: the search for general concepts. Proc Natl Acad Sci USA 95:4795ADSCrossRefGoogle Scholar
  16. Fullerton GD, Cameron IL (2007) Water compartments in cells. Methods Enzymol 428:1CrossRefGoogle Scholar
  17. German B, Wyman J (1937) The titration curves of oxygenated and reduced hemoglobin. J Biol Chem 117:533Google Scholar
  18. Glaser R (1996) The electric properties of the membrane and the cell surface. In: Zimmermann U, Neil GA (eds) Electromanipulation of cells. CRC Press, Boca RatonGoogle Scholar
  19. Griffith JH, Scheraga HA (2004) Statistical thermodynamics of aqueous solutions. I. Water structure, solutions with non-polar solutes, and hydrophobic interactions. J Mol Struct (THEOCHEM) 682:97CrossRefGoogle Scholar
  20. Guy Y, Sandberg M et al (2008) Determination of zeta-potential in rat organotypic hippocampal cultures. Biophys J 94:4561CrossRefGoogle Scholar
  21. Heinz WF, Hoh JH (1999) Relative surface charge density mapping with the atomic force microscope. Biophys J 76:528CrossRefGoogle Scholar
  22. Hianik T, Passechnik VI (1995) Bilayer lipid membranes. Structure and mechanical properties. Kluwer, DordrechtGoogle Scholar
  23. Honig BH et al (1986) Electrostatic interactions in membranes and proteins. Ann Rev Biophys Biophys Chem 151:163CrossRefGoogle Scholar
  24. Imanidis G, Luetolf P (2006) An extended model based on the modified Nernst-Planck equation for describing transdermal iontophoresis of weak electrolytes. J Pharm Sci 95:1434CrossRefGoogle Scholar
  25. Israelachvili J (1994) Intermolecular and surface forces, 2nd edn. Academic, LondonGoogle Scholar
  26. Kauffman SA (1993) The origin of order. Oxford University Press, New YorkGoogle Scholar
  27. Kloss E, Courtemanche N et al (2008) Repeat-protein folding: new insights into origins of cooperativity, stability, and topology. Arch Biochem Biophys 469:83CrossRefGoogle Scholar
  28. Kunz W, Lo Nostro P et al (2004) The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci 9:1CrossRefGoogle Scholar
  29. Lalchev Z, Todorov R et al (2008) Thin liquid films as a model to study surfactant layers on the alveolar surface. Curr Opin Colloid Interface Sci 13:183CrossRefGoogle Scholar
  30. Lammert PE, Prost J et al (1996) Ion drive for vesicles and cells. J Theor Biol 178:387CrossRefGoogle Scholar
  31. Lauffer MA (1975) Entropy-driven processes in biology. Springer, BerlinCrossRefGoogle Scholar
  32. Leff HS, Rex AF (1990) Maxwell’s demon. Entropy, information, computing. Adam Hilger, BristolGoogle Scholar
  33. Lesk AM (2002) Introduction to bioinformatics. Oxford University Press, OxfordGoogle Scholar
  34. Loehe JR, Donohue MD (1997) Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems. AIChE J 43:180CrossRefGoogle Scholar
  35. Lommerse PHM, Spaink HP et al (2004) In vivo plasma membrane organization: results of biophysical approaches. Biochim Biophys Acta 1664:119CrossRefGoogle Scholar
  36. Lynden-Bell RM, Morris SC et al (eds) (2010) Water and life. The unique properties of H2O. CRC Press, Boca RatonGoogle Scholar
  37. Makarov VA, Feig M et al (1998) Diffusion of solvent around bimolecular solutes: a molecular dynamics simulation study. Biophys J 75:150CrossRefGoogle Scholar
  38. Matthew JB (1985) Electrostatic effects in proteins. Annu Rev Biophys Biophys Chem 14:387CrossRefGoogle Scholar
  39. McLaughlin S (1989) The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113CrossRefGoogle Scholar
  40. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 43:8605Google Scholar
  41. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 43:8590Google Scholar
  42. Meinhardt H (2008) Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr Top Dev Biol 81:1CrossRefGoogle Scholar
  43. Meinhardt H (2009) Models for the generation and interpretation of gradients. Cold Spring Harb Perspect Biol 1:a001362CrossRefGoogle Scholar
  44. Muñoz V (2007) Conformational dynamics and ensembles in protein folding. Annu Rev Biophys Biomol Struct 36:395CrossRefGoogle Scholar
  45. Netter H (1959) Theoretische Biochemie. Springer, BerlinCrossRefGoogle Scholar
  46. Pain RH (2000) Mechanism of protein folding, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  47. Parsegian VA (2002) Protein-water interactions. Int Rev Cytol Surv – Cell Biol 215:1Google Scholar
  48. Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, ChichesterGoogle Scholar
  49. Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32:933CrossRefGoogle Scholar
  50. Plotkin SS, Onuchic JN (2002) Understanding protein folding with energy landscape theory. Part I: basic concepts. Q Rev Biophys 35:111Google Scholar
  51. Raschke TM (2006) Water structure and interactions with protein surfaces. Curr Opin Struct Biol 16:152CrossRefGoogle Scholar
  52. Raudino A, Mauzerall D (1986) Dielectric properties of the polar head group region of zwitterionic lipid bilayers. Biophys J 50:441CrossRefGoogle Scholar
  53. Rhumbler L (1898) Physikalische Analyse von Lebenserscheinungen der Zelle. 1. Bewegung, Nahrungsaufnahme, Defäkation, Vacuolen-Pulsation und Gehäusebau bei lobosen Rhizopoden. Arch Entwicklungsmechanik der Organismen 7:103CrossRefGoogle Scholar
  54. Roduit C, Van Der Goot FG et al (2008) Elastic membrane heterogeneity of living cells revealed by stiff nanoscale membrane domains. Biophys J 94:1521CrossRefGoogle Scholar
  55. Rubinacci A, Covini M et al (2002) Bone as an ion exchange system. Evidence for a link between mechanotransduction and metabolic needs. Am J Physiol Endocrinol Metab 282:E851Google Scholar
  56. Schmid R (2001) Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule. Monatshefte für Chemie 132:1295CrossRefGoogle Scholar
  57. Schmid-Schönbein GW, Woo SL-Y et al (1986) Frontiers in biomechanics. Springer, New YorkCrossRefGoogle Scholar
  58. Schrödinger E (1944) What is life? Cambridge University Press, LondonGoogle Scholar
  59. Shannon CE, Weaver W (1962) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  60. Starke-Peterkovic T, Turner N et al (2005) Electric field strength of membrane lipids from vertebrate species membrane lipid composition and Na+K+ATPase molecular activity. Am J Physiol 288:R663Google Scholar
  61. Strait BJ, Dewey TG (1996) The Shannon information entropy of protein sequences. Biophys J 71:148CrossRefGoogle Scholar
  62. Takashima S (1963) Dielectric dispersion of DNA. J Mol Biol 7:455CrossRefGoogle Scholar
  63. Thompson DW (1966) On growth and form. University Press, CambridgeGoogle Scholar
  64. Tinoco I, Sauer K et al (2002) Physical chemistry, principles and applications in biological sciences, 4th edn. Prentice-Hall, New JerseyGoogle Scholar
  65. Veldhuizen EJA, Haagsman HP (2000) Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta 1467:255CrossRefGoogle Scholar
  66. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  67. Voet D, Voet JG (2011) Biochemistry, 4th edn. Wiley, New York, International EditionGoogle Scholar
  68. Voigt A, Donath E (1989) Cell surface electrostatics and electrokinetics. In: Glaser R, Gingell D (eds) Biophysics of the cell surface, vol 5, Springer series of biophysics. Springer, Berlin, p 75CrossRefGoogle Scholar
  69. Watanabe H, Vriens SH et al (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044CrossRefGoogle Scholar
  70. Waterman TH, Morowitz HJ (eds) (1965) Theoretical and mathematical biology. Blaisdell, New YorkGoogle Scholar
  71. Wernet P, Nordlund D et al (2004) The structure of the first coordination shell in liquid water. Science 304:995ADSCrossRefGoogle Scholar
  72. Westerhoff HV, van Dam K (1987) Thermodynamics and control of biological free-energy transduction. Elsevier Science, New YorkGoogle Scholar
  73. Zhang YJ, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658CrossRefGoogle Scholar
  74. Zielkiewicz J (2005) Structural properties of water. Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J Chem Phys 123:104501ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Humboldt-UniversitätBerlinGermany

Personalised recommendations