A Social Location-Based Emergency Service to Eliminate the Bystander Effect

  • Andreas Geyer-Schulz
  • Michael Ovelgönne
  • Andreas C. Sonnenbichler
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 222)


The availability of inexpensive smartphones with GPS units and the ability to run 3rd party software facilitated the rapid emergence of a large number of location-based services (LBS). While LBSs are mostly developed for supporting travel and navigation related application scenarios, in this contribution we want to motivate the use of mobile devices for personal safety services. The problem of getting help in a crowd has been addressed by research in social psychology for more than 30 years. Obstacles in the social help process have been summarized in the concept of the bystander effect. This contribution aims to show how a LBS can overcome these obstacles by activating the social group of a victim. We discuss features of an emergency alert service that notifies nearby contacts of a victim of the incident and guides them to the victim so that they can provide help. Furthermore, we will discuss several ways to develop an emergency alert service as an industrial product which infers the social closeness of service participants from different sources of data. Also, we will discuss and compare approaches for the system design we considered while implementing a prototype. A feasibility assessment indicates that this service will actually provide benefits in practice.


Emergency recommender Social network analysis Bystander effect Privacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Batson, C.D., Cochran, P.J., Biederman, M.F., Blosser, J.L., Ryan, M.J., Vogt, B.: Failure to help when in a hurry: Callousness or conflict? Personality and Social Psychology Bulletin 4, 97–101 (1978)CrossRefGoogle Scholar
  3. 3.
    Baumeister, R.F., Chesner, S.P., Sanders, P.S., Tice, D.M.: Who’s in charge here? Group leaders do lend help in emergencies. Personality and Social Psychology Bulletin 14, 17–22 (1995)CrossRefGoogle Scholar
  4. 4.
    Borkowski, J., Lempiainen, J.: Practical network-based techniques for mobile positioning in UMTS. EURASIP J. Appl. Signal Process. 2006, 149–149 (2006)Google Scholar
  5. 5.
    Chen, R., Sharman, R., Rao, H.R., Upadhyaya, S.J.: Coordination in emergency response management. Communications of the ACM 51(5), 66–73 (2008)CrossRefGoogle Scholar
  6. 6.
    Clark, R., Word, L.E.: Why don’t bystanders help? Because of ambiguity? Journal of Personality and Social Psychology 24, 392–400 (1972)CrossRefGoogle Scholar
  7. 7.
    Comfort, L.K., Kilkon, K., Zagorecki, A.: Coordination in rapidly evolving disaster response systems: The role of information. American Behavioral Scientist 48(3), 295–313 (2009)CrossRefGoogle Scholar
  8. 8.
    Cramer, R.E., McMaster, M.R., Bartell, P., Dragna, M.: Subject competence and the minimization of the bystander effect. Journal of Applied Social Psychology 18, 1133–1148 (1988)CrossRefGoogle Scholar
  9. 9.
    Darley, J.M., Batson, C.: ”From Jerusalem to Jericho”: A study of situational and dispositional variables in helping behavior. Journal of Personality and Social Psychology 27(1), 100–108 (1973)CrossRefGoogle Scholar
  10. 10.
    Darley, J.M., Latané, B.: Bystander intervention in emergencies: Diffusion of responsibility. Journal of Personality and Social Psychology 8(4), 377–383 (1968)CrossRefGoogle Scholar
  11. 11.
    Eagle, N., Pentland, A.: Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing 9, 1–14 (2005)CrossRefGoogle Scholar
  12. 12.
    EU: Directive 2006/24/EC of the European Parliament and of the Council on the retention of data generated or processed in connection with the provision of publicly available electronic communications services or of public communications networks and amending Directive 2002/58/EC (March 2006)Google Scholar
  13. 13.
    Faraj, S., Xiao, Y.: Coordination in fast-response organizations. Management Science 52(8), 1155–1169 (2006)CrossRefGoogle Scholar
  14. 14.
    Franke, M., Geyer-Schulz, A.: An update algorithm for restricted random walk clustering for dynamic data sets. Advances in Data Analysis and Classification 3(1), 63–92 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Garcia, S.M., Weaver, K., Moskowitz, G.B., Darley, J.M.: Crowded minds: The implicit bystander effect. Journal of Personality and Social Psychology 83, 843–853 (2002)CrossRefGoogle Scholar
  16. 16.
    Geyer-Schulz, A., Ovelgönne, M., Sonnenbichler, A.: Getting help in a crowd – a social emergency alert service. In: Proceedings of the International Conference on e-Business (ICE-B), pp. 1–12 (2010)Google Scholar
  17. 17.
    Granovetter, M.: The strength of weak ties: A network theory revisited. In: Marsden, P.V., Lin, N. (eds.) Social Structure and Network Analysis, ch. 5, pp. 105–130. Sage Publications, Inc., Beverly Hills (1982)Google Scholar
  18. 18.
    Granovetter, M.S.: The strength of weak ties. The American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  19. 19.
    Hoser, B., Geyer-Schulz, A.: Eigenspectral analysis of hermitian adjacency matrices for the analysis of group substructures. The Journal of Mathematical Sociology 29(4), 265–294 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kikiras, P., Drakoulis, D.: An integrated approach for the estimation of mobile subscriber geolocation. Wireless Personal Communications 30(2), 217–231 (2004)CrossRefGoogle Scholar
  21. 21.
    Latané, B., Darley, J.: The Unresponsive Bystander: Why doesn’t he help? Appleton-Century-Crofts, NY (1970)Google Scholar
  22. 22.
    Levine, M., Prosser, A., Evans, D., Reicher, S.: Identity and emergency intervention: How social group membership and inclusiveness of group boundaries shape helping behavior. Personality and Social Psychology Bulletin 31(4), 443–453 (2005)CrossRefGoogle Scholar
  23. 23.
    Markey, P.M.: Bystander intervention in computer-mediated communication. Computers in Human Behavior 16, 183–188 (2000)CrossRefGoogle Scholar
  24. 24.
    Milgram, S.: The experience of living in cities. Science 167, 1461–1468 (1970)CrossRefGoogle Scholar
  25. 25.
    Miller, D.T., McFarland, C.: Pluralistic ignorance: When similarity is interpreted as dissimilarity. Journal of Personality and Social Psychology 53, 298–305 (1987)CrossRefGoogle Scholar
  26. 26.
    Monin, B., Norton, M.: Perceptions of a fluid consensus: Uniqueness bias, false consensus, false polarization, and pluralistic ignorance in a water conservation crisis. Personality and Social Psychology Bulletin 29, 559–567 (2003)CrossRefGoogle Scholar
  27. 27.
    Moriarty, T.: Crime, commitment, and the responsive bystander: Two field experiments. Journal of Personality and Social Psychology 31, 370–376 (1975)CrossRefGoogle Scholar
  28. 28.
    Nadler, A., Halabi, S.: Intergroup helping as status relations: Effects of status stability, identification, and type of help on receptivity to high-status group’s help. Journal of Personality and Social Psychology 91(1), 97–110 (2006)CrossRefGoogle Scholar
  29. 29.
    Open Handset Alliance,
  30. 30.
    Ovelgönne, M., Geyer-Schulz, A.: Cluster cores and modularity maximization. In: IEEE International Conference on Data Mining Workshops, ICDMW 2010, pp. 1204–1213. IEEE Computer Society (2010)Google Scholar
  31. 31.
    Ovelgönne, M., Geyer-Schulz, A., Stein, M.: Randomized greedy modularity optimization for group detection in huge social networks. In: SNA-KDD 2010: Proceedings of the 4th Workshop on Social Network Mining and Analysis. ACM, New York (2010) (to appear)Google Scholar
  32. 32.
    Ovelgönne, M., Sonnenbichler, A.C., Geyer-Schulz, A.: Social emergency alert service - a location-based privacy-aware personal safety service. In: NGMAST 2010. Proceedings of the 2010 Fourth International Conference on Next Generation Mobile Applications, Services and Technologies, pp. 84–89. IEEE Computer Society (2010)Google Scholar
  33. 33.
    Palen, L., Liu, S.B.: Citizen communication in crisis: Anticipating a future of ICT-supported public participation. In: CHI 2007 Proceedings, pp. 727–736. ACM (2007)Google Scholar
  34. 34.
    Piliavin, I.M., Piliavin, J.A., Rodin, J.: Costs, diffusion, and the stigmatized victim. Journal of Personality and Social Psychology 32(3), 429–438 (1975)CrossRefGoogle Scholar
  35. 35.
    Rungg, A.: Privatspäre 2. 0. Financial Times Deutschland, p. 25 (February 17, 2010)Google Scholar
  36. 36.
    Rutkowski, G.K., Gruder, C.L., Romer, D.: Group cohesiveness, social norms, and bystander intervention. Journal of Personality and Social Psychology 44, 545–552 (1983)CrossRefGoogle Scholar
  37. 37.
    Schwartz, S.H., Gottlieb, A.: Bystander anonymity and reaction to emergencies. Journal of Personality and Social Psychology 39, 418–430 (1980)CrossRefGoogle Scholar
  38. 38.
    Shotland, R.L., Heinold, W.D.: Bystander response to arterial bleeding: Helping skills, the decision-making process, and differentiating the helping response. Journal of Personality and Social Psychology 49, 347–356 (1985)CrossRefGoogle Scholar
  39. 39.
    Shotland, R.L., Stebbins, C.A.: Bystander response to rape: Can a victim attract help? Journal of Applied Social Psychology 10, 510–527 (1980)CrossRefGoogle Scholar
  40. 40.
    Shotland, R.L., Straw, M.K.: Bystander response to an assault: When a man attacks a woman. Journal of Personality and Social Psychology 34, 990–999 (1976)CrossRefGoogle Scholar
  41. 41.
    Smith, J.: The nature of personal robbery. Home Office Research Study 254, Home Office Research, Development and Statictics Directorate (2003)Google Scholar
  42. 42.
    Spiegel Online: Beaten to death in broad daylight - germany shocked by brutal commuter train murder (2009),,1518,649134,00.html
  43. 43.
    Spiege Online: Notruf-Mitschnitt belegt Brutalität der S-Bahn-Prügler (September 2009),,1518,656858,00.html
  44. 44.
    Spiegel Online: Tödlicher Angriff: Mehrere Menschen beobachteten Münchner S-Bahn-Attacke (September 2009),,1518,649288,00.html
  45. 45.
    Stürmer, S., Snyder, M., Omoto, A.M.: Prosocial emotions and helping: The moderating role of group membership. Journal of Personality and Social Psychology 88(3), 532–546 (2005)CrossRefGoogle Scholar
  46. 46.
    Yuan, Y., Detlor, B.: Intelligent mobile crisis response systems. Communications of the ACM 48(2), 95–98 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Geyer-Schulz
    • 1
  • Michael Ovelgönne
    • 1
  • Andreas C. Sonnenbichler
    • 1
  1. 1.Institute of Information Systems and ManagementKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations