Skip to main content

Maximum a Posteriori Decoding of Arithmetic Codes in Joint Source-Channel Coding

  • Conference paper
e-Business and Telecommunications (ICETE 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 222))

Included in the following conference series:

Abstract

Arithmetic codes are being increasingly used in the entropy coding stage in many multimedia transmission applications. Combining channel coding with arithmetic coding can give implementation and performance advantages compared to separate source and channel coding. In this work, novel improvements are introduced into a technique by Grangetto et al. that uses maximum a posteriori (MAP) estimation for decoding joint source-channel coding using arithmetic codes. The arithmetic decoder is modified for quicker symbol decoding and error detection by the introduction of a look-ahead technique, and the calculation of the MAP metric is modified for faster error detection. These modifications also result in improved performance compared to the original scheme. Experimental results show an improvement of up to 0.4 dB when using soft-decision decoding and 0.6 dB when using hard-decision decoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rissanen, J.J.: Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Development 20(3), 198–203 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proceedings of the IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  3. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  4. Vembu, S., Verdù, S., Steinberg, Y.: The source-channel separation theorem revisited. IEEE Transactions on Information Theory 41(1), 44–54 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, C., Cleary, J.G., Irvine, S.A., Rinsma-Melchert, I., Witten, I.H.: Integrating error detection into arithmetic coding. IEEE Transactions on Communications 45(1), 1–3 (1997)

    Article  Google Scholar 

  6. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms, ch. 25, pp. 324–333. Cambridge University Press (2003)

    Google Scholar 

  7. Grangetto, M., Cosman, P., Olmo, G.: Joint source/channel coding and MAP decoding of arithmetic codes. IEEE Transactions on Communications 53(6), 1007–1016 (2005)

    Article  Google Scholar 

  8. Bi, D., Hoffman, M.W., Sayood, K.: Joint Source Channel Coding Using Arithmetic Codes. Synthesis Lectures on Communications. Morgan & Claypool Publishers (2010)

    Google Scholar 

  9. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Communications of the ACM 30(6), 520–540 (1987)

    Article  Google Scholar 

  10. Lelewer, D.A., Hirschberg, D.S.: Data compression. ACM Computing Surveys (3), 261–296 (September 1987)

    Google Scholar 

  11. Sayir, J.: Arithmetic coding for noisy channels. In: Proceedings of the 1999 IEEE Information Theory and Communications Workshop, pp. 69–71 (June 1999)

    Google Scholar 

  12. Guionnet, T., Guillemot, C.: Soft decoding and synchronization of arithmetic codes: Application to image transmission over noisy channels. IEEE Transactions on Image Processing 12(12), 1599–1609 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hagenauer, J.: Rate-compatible punctured convolutional codes (RCPC codes) and their applications. IEEE Transactions on Communications 36(4), 389–400 (1988)

    Article  Google Scholar 

  14. Grangetto, M., Scanavino, B., Olmo, G., Benedetto, S.: Iterative decoding of serially concatenated arithmetic and channel codes with JPEG 2000 applications. IEEE Transactions on Image Processing 16(6), 1557–1567 (2007)

    Article  MathSciNet  Google Scholar 

  15. Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory 20(2), 284–287 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Park, M., Miller, D.J.: Joint source-channel decoding for variable-length encoded data by exact and approximate MAP sequence estimation. IEEE Transactions on Communications 48(1), 1–6 (2000)

    Article  Google Scholar 

  17. Jelinek, F.: Fast sequential decoding algorithm using a stack. IBM Journal of Research and Development 13(6), 675–685 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ben-Jamaa, S., Weidmann, C., Kieffer, M.: Analytical tools for optimizing the error correction performance of arithmetic codes. IEEE Transactions on Communications 56(9), 1458–1468 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spiteri, T., Buttigieg, V. (2012). Maximum a Posteriori Decoding of Arithmetic Codes in Joint Source-Channel Coding. In: Obaidat, M.S., Tsihrintzis, G.A., Filipe, J. (eds) e-Business and Telecommunications. ICETE 2010. Communications in Computer and Information Science, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25206-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25206-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25205-1

  • Online ISBN: 978-3-642-25206-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics