Visualization and Haptics for Interactive Medical Image Analysis: Image Segmentation in Cranio-Maxillofacial Surgery Planning

  • Ingela Nyström
  • Johan Nysjö
  • Filip Malmberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7066)


A central problem in cranio-maxillofacial (CMF) surgery is to restore the normal anatomy of the skeleton after defects, e.g., trauma to the face. With careful pre-operative planning, the precision and predictability of the craniofacial reconstruction can be significantly improved. In addition, morbidity can be reduced thanks to shorter operation time. An important component in surgery planning is to be able to accurately measure the extent of anatomical structures. Of particular interest are the shape and volume of the orbits (eye sockets). These properties can be measured in 3D CT images of the skull, provided that an accurate segmentation of the orbits is available. Here, we present a system for interactive segmentation of the orbit in CT images. The system utilizes 3D visualization and haptic feedback to facilitate efficient exploration and manipulation of 3D data.


Compute Tomography Image Manual Segmentation Haptic Feedback Haptic Device Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Delingette, H.: General Object R econstruction Based on Simplex Meshes. International Journal of Computer Vision 32(2), 111–146 (1999)CrossRefGoogle Scholar
  3. 3.
    Herman, G.T., Zheng, J., Bucholtz, C.A.: Shape-based Interpolation. IEEE Computer Graphics and Applications 12(3), 69–79 (1992)CrossRefGoogle Scholar
  4. 4.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. International Journal of Computer Vision 1, 321–331 (1987)CrossRefGoogle Scholar
  5. 5.
    Montagnat, J., Delingette, H., Ayache, N.: A Review of Deformable Surfaces: Topology, Geometry and Deformation. Image and Vision Computing 19, 1023–1040 (2001)CrossRefGoogle Scholar
  6. 6.
    Nyström, I., Malmberg, F., Vidholm, E., Bengtsson, E.: Segmentation and Visualization of 3D Medical Images through Haptic Rendering. In: Proceedings of the 10th International Conference on Pattern Recognition and Information Proceeding (PRIP 2009), pp. 43–48. Publishing Center of BSU (2009)Google Scholar
  7. 7.
    SensAble Technologies: SensAble (2011), (accessed on April 27, 2011 )
  8. 8.
    SenseGraphics AB: H3D API (2011), (accessed on April 27, 2011)
  9. 9.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion. Artificial Intelligence 36(1), 91–123 (1988)CrossRefzbMATHGoogle Scholar
  10. 10.
    Udupa, J.K., Herman, G.T. (eds.): 3D Imaging in Medicine, 2nd edn. CRC Press, Inc. (2000)Google Scholar
  11. 11.
    Udupa, J.K., LeBlanc, V.R., Zhuge, Y., Imielinska, C., Schmidt, H., Currie, L.M., Hirsch, B.E., Woodburn, J.: A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics 30(2), 75–87 (2006)CrossRefGoogle Scholar
  12. 12.
    Vidholm, E.: Visualization and Haptics for Interactive Medical I age Analysis. Ph.D. thesis, Uppsala University (2008) Google Scholar
  13. 13.
    Web3D Consortium: X3D (2011), (accessed on April 27, 2011)
  14. 14.
    Xu, C., Prince, J.L.: Snakes, Shapes, and Gradient Vector Flow. IEE Transactions on Image Processing 7(3), 359–369 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ingela Nyström
    • 1
  • Johan Nysjö
    • 1
  • Filip Malmberg
    • 1
  1. 1.Centre for Image AnalysisUppsala UniversitySweden

Personalised recommendations