Hierarchical Activity Recognition Using Automatically Clustered Actions

  • Tim L. M. van Kasteren
  • Gwenn Englebienne
  • Ben J. A. Kröse
Conference paper

DOI: 10.1007/978-3-642-25167-2_9

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7040)
Cite this paper as:
van Kasteren T.L.M., Englebienne G., Kröse B.J.A. (2011) Hierarchical Activity Recognition Using Automatically Clustered Actions. In: Keyson D.V. et al. (eds) Ambient Intelligence. AmI 2011. Lecture Notes in Computer Science, vol 7040. Springer, Berlin, Heidelberg

Abstract

The automatic recognition of human activities such as cooking, showering and sleeping allows many potential applications in the area of ambient intelligence. In this paper we show that using a hierarchical structure to model the activities from sensor data can be very beneficial for the recognition performance of the model. We present a two-layer hierarchical model in which activities consist of a sequence of actions. During training, sensor data is automatically clustered into clusters of actions that best fit to the data, so that sensor data only has to be labeled with activities, not actions. Our proposed model is evaluated on three real world datasets and compared to two non-hierarchical temporal probabilistic models. The hierarchical model outperforms the non-hierarchical models in all datasets and does so significantly in two of the three datasets.

Keywords

Hierarchical Models Activity Recognition Sensor Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tim L. M. van Kasteren
    • 1
  • Gwenn Englebienne
    • 2
  • Ben J. A. Kröse
    • 2
  1. 1.Department of Computer EngineeringBoğaziçi UniversityIstanbulTurkey
  2. 2.Intelligent Systems Lab AmsterdamUniversity of AmsterdamThe Netherlands

Personalised recommendations