Technologies for Balancing Electrical Energy and Power

  • Bert Droste-Franke
  • Boris P. Paal
  • Christian Rehtanz
  • Dirk Uwe Sauer
  • Jens-Peter Schneider
  • Miranda Schreurs
  • Thomas Ziesemer
Chapter
Part of the Ethics of Science and Technology Assessment book series (ETHICSSCI, volume 40)

Abstract

Having discussed the need for balancing electrical energy and power with additional technologies that can provide load adaption, transport of electricity from abroad, or storage of electricity, the following chapter provides an overview of technological options. Section 5.1 develops a classification scheme. Individual technologies are discussed in Sects. 5.2, 5.3 and 5.4, following the differentiation of “storage” technologies providing ways from “electricity to electricity”, “electricity to anything” and “anything to electricity”. Section 5.5 summarises options for demand response and demand-side management, including the bundling of individual technologies. The analysis in Sect. 5.6 reveals the life cycle costs of individual storage technologies. These are discussed in the context of different specific tasks involved in balancing energy and power. A central requirement for a system with a high penetration of renewable electricity suppliers and balancing capabilities is the viability of various technologies. Therefore, Sect. 5.7 analyses, to the extent possible, the future viability of relevant technologies. The environmental effects, resource use and system characteristics according to the indicators derived in Sect. 2.2 are considered.

Keywords

Storage System Electric Vehicle Heat Pump External Cost Battery Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aul R, Rittmeyer P (2011) Lithium availability – meeting tomorrow’s demand. Chemetall, Presentation at Batterietag NRW 2011, Aachen, 28 Feb 2011Google Scholar
  2. Aundrup T, Benz T, Dörnemann C, Fischer W, Gehlen C, Glaunsinger W, Hellmuth H, Kreusel J, Menke P, Neumaier R, Rehtanz C, Schomberg A, Schwippe J (2010) Übertragung elektrischer Energie, Positionspapier der Energietechnischen Gesellschaft im VDE (ETG). VDE, Frankfurt am MainGoogle Scholar
  3. BGH (2008) Judgement of 18.07.2007 (file no. VIII ZR 288/05). Bundesgerichtshof (BGH), Recht der Energiewirtschaft 2008:19–21Google Scholar
  4. BMU (2007) The integrated energy and climate programme of the German government. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU). www.bmu.de/files/pdfs/allgemein/application/pdf/hintergrund_meseberg_en.pdf. Accessed 30 Nov 2010Google Scholar
  5. Cavoukian A, Polonetsky J, Wolf C (2010) Smart privacy for the smart grid. Identity Inf Soc 3:275–294CrossRefGoogle Scholar
  6. Diederen P, Kemp R, Verberne P, Ziesemer T, van Zon A (1995) Energy technologies, environmental policy and competitiveness. Final report for the JOULE II program of the European CommissionGoogle Scholar
  7. Droste-Franke B (2005) Quantifizierung von Umweltschäden als Beitrag zu Umweltökonomischen Gesamtrechnungen. Dissertation, Universität Stuttgart, StuttgartGoogle Scholar
  8. EEA (2010) EU27 net imports of natural Gas, Oil, Solid Fuels. European Environment Agency (EEA). www.eea.europa.eu/data-and-maps/figures/eu27-net-imports-of-naturalGoogle Scholar
  9. Ethik-Kommission (2011) Deutschlands Energiewende – ein Gemeinschaftswerk für die Zukunft. Ethik-Kommission Sichere Energieversorgung, BerlinGoogle Scholar
  10. European Commission (2008b) New energy externalities development for sustainability (NEEDS), Final reports. Integrated Project NEEDS, project no. 502687, Sixth Framework Programme, Brussels, www.needs-project.orgGoogle Scholar
  11. Golombek R, Greaker M, Kittelsen SAC, Røgeberg O, Aune FR (2009) Carbon capture and storage technologies in the European power market. Statistics Norway Research Department Discussion Papers No. 603, DecemberGoogle Scholar
  12. Grunwald A (1999) Transdisziplinäre Umweltforschung: Methodische Probleme der Qualitätssicherung. TA-Datenbank-Nachrichten 8(3/4):32–39Google Scholar
  13. IAEA (2005) Energy indicators for sustainable development, Guidelines and methodologies. International Atomic Energy Agency, United Nations Department of Economic and Social Affairs, International Energy Agency, Eurostat, European Environment Agency, ViennaGoogle Scholar
  14. Knies G (2006) Global energy and climate security through solar power from deserts. Trans-Mediterranean Renewable Energy Cooperation, TREC In co-operation with The Club of Rome. www.desertec.org/downloads/deserts_en.pdf. 25 Aug 2011)Google Scholar
  15. Krewitt W, Schlomann B (2006) Externe Kosten der Stromerzeugung aus erneuerbaren Energien im Vergleich zur Stromerzeugung aus fossilen Energieträgern. Gutachten im Auftrag des BMU, StuttgartGoogle Scholar
  16. Krewitt W, Simon S, Graus W, Teske S, Zervos A, Schäfer O (2007) The 2°C scenario – a sustainable world energy perspective. Energy Policy 35:4969–4980CrossRefGoogle Scholar
  17. Madlener R, Wenk C (2008) Efficient investment portfolios for the Swiss electricity supply Sector. FCN Working Papers 2/2008Google Scholar
  18. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313MATHCrossRefGoogle Scholar
  19. Nitsch J, Wenzel B (2009) Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland unter Berücksichtigung der europäischen und globalen Entwicklung, Leitszenario 2009. Untersuchung im Auftrag des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU), BerlinGoogle Scholar
  20. Nutzinger HG, Radke V (1995) Das Konzept der nachhaltigen Wirtschaftsweise. In: Nutzinger HG (ed) Nachhaltige Wirtschaftsweise und Energieversorgung, Konzepte, Bedingungen, Ansatzpunkte. Metropolis-Verlag, MarburgGoogle Scholar
  21. PwC, PIK, IIASA, ECF (2010) 100% renewable electricity. A roadmap to 2050 for Europe and North Africa. PricewaterhouseCoopers LLP (PwC), Potsdam Institute for Climate Impact Research (PIK), International Institute for Applied Systems Analysis (IIASA), European Climate Forum (ECF). www.pwc.co.uk/pdf/100_percent_renewable_electricity.pdf. Accessed 26 Aug 2011Google Scholar
  22. Rious V, Usaola J, Saguan M, Glachant JM, Dessante P (2008) Assessing available transfer capacity on a realistic European network: impact of assumptions on wind power generation. In: 1st international scientific conference “Building Networks for a Brighter Future”, Rotterdam, DecemberGoogle Scholar
  23. Roßnagel A, Jandt S (2010) Datenschutzkonformes Energieinformationsnetz. DuD 34:373–378CrossRefGoogle Scholar
  24. Rydh CJ, Svärd B (2003) Impact on global metal flows arising from the use of portable rechargeable batteries. Sci Total Environ 302:167–184CrossRefGoogle Scholar
  25. Säcker FJ (2009) Netzausbau- und Kooperationsverpflichtungen der Übertragungsnetzbetreiber nach Inkrafttreten des EnLAG und der Dritten StromRL 2009/72 EG vom 13/7/2009. Recht der Energiewirtschaft 9:305Google Scholar
  26. Steger U, Büdenbender U, Feess E, Nelles D (2008) Die Regulierung elektrischer Netze. Offene Fragen und Lösungsansätze, vol 32, Ethics of science and technology assessment. Springer, BerlinGoogle Scholar
  27. Tarrasón L (2009) Report on deliveries of source-receptor matrices with the regional EMEP Unified model. Deliverable 1.2 RS1b, IP NEEDS, project no. 502687, Sixth framework programme, BrusselsGoogle Scholar
  28. Theobald C (2011) §1. Grundlagen des deutschen Rechts der Energiewirtschaf. In: Schneider J-P, Theobald C (eds) Recht der Energiewirtschaft. C.H. Beck, Münche, pp 1–37Google Scholar
  29. Umweltbundesamt (2010) 2050: 100%. Energieziel 2050: 100% Strom aus erneuerbaren Quellen. Umweltbundesamt, Dessau-Roßlau, www.umweltdaten.de/publikationen/fpdf-l/3997.pdf. 26 Aug 2011Google Scholar
  30. van Alphen K, van Ruijven J, Kasa S, Hekkert M, Turkenburg W (2009) The performance of the Norwegian carbon dioxide, capture and storage innovation system. Energy Policy 37:43–55CrossRefGoogle Scholar
  31. Waniek D, Handschin E, Häger U, Rehtanz C (2008) Influences of wind energy on the operation of transmission systems. In: Proceedings of the IEE power & energy society general meeting, Pittsburgh, pp 1–8Google Scholar
  32. Wikipedia (2011) Automobile. Wikipedia: http://en.wikipedia.org/wiki/AutomobileGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bert Droste-Franke
    • 1
  • Boris P. Paal
    • 2
  • Christian Rehtanz
    • 3
  • Dirk Uwe Sauer
    • 4
  • Jens-Peter Schneider
    • 5
  • Miranda Schreurs
    • 6
  • Thomas Ziesemer
    • 7
  1. 1.Europäische Akademie GmbHBad Neuenahr-AhrweilerGermany
  2. 2.Universität FreiburgFreiburgGermany
  3. 3.Lehrstuhl für Energiesysteme und EnergiewirtschaftTU DortmundNordrhein-WestfalenGermany
  4. 4.Institut für Stromrichtertechnik und Elektrische AntriebeRWTH AachenAachenGermany
  5. 5.Institut für Medien- und Informationsrecht/Öffentliches RechtUniversität FreiburgFreiburgGermany
  6. 6.Forschungsstelle für UmweltpolitikFreie Universiät BerlinBerlinGermany
  7. 7.Department of EconomicsMaastricht UniversityMaastrichtNetherlands

Personalised recommendations