Advertisement

A Genetic Consideration of Skeletal Disorders

  • Yong-Whee Bahk
  • Soo-Kyo Chung
Chapter

Abstract

The human skeleton has the unique function of calcium storage and liberation in addition to locomotion and hematopoiesis, and acting as the body framework. Under the complex homeostatic regulation of calcitonin and parathormone as well as the influence of auxiliary hormones and vitamin D, living bones are ceaselessly engaged with deposition and removal of calcium salts in the form of bone production and resorption, which are mediated by the activities of osteoblasts and osteoclasts, respectively. Basically, skeletal diseases are reflected first as quantitative changes in osseous calcium salts and serum calcium levels. The mobilization of calcium salts from and excessive deposition on bone in bone disorders, both nongenetic and genetic, may result in demineralization or decalcification and osteosclerosis, respectively. Then, with the advance of disease, pathological and anatomical skeletal changes may follow manifesting in the form of osteopenia, osteoporosis, osteolysis, sclerosis, eburnation, bone defect, growth disturbance, and deformity, either singly or in combination. Thus, in order to ideally detect bone disorders at an early stage, the calcium metabolic profile of bone must be obtained by an appropriate means before anatomical change takes place.

Keywords

Slip Capital Femoral Epiphysis Reactive Arthritis Calcium Salt Diffuse Idiopathic Skeletal Hyperostosis Skeletal Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References


  1. Amor B, Cherot A, Delbarre, et al (1977) Hydroxyapatite rheumatism and HLA markers. J Rheumatol Suppl 3:101–104
PubMedGoogle Scholar
  2. Bahk YW, Chung SK, Park YH, et al (1998) Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 39:130–139
PubMedGoogle Scholar
  3. Benli IT, Akalin S, Boysan E, et al (1992) Epidemiological, clinical and radiological aspects of osteopoikilosis. J Bone Joint Surg Br 74:504–506
PubMedGoogle Scholar
  4. Black B, Dooley J, Pyper A, Reed M (1993) Multiple hereditary exostoses. An epidemiologic study of an isolated community in Manitoba. Clin Orthop Rel Res 287:212–217
Google Scholar
  5. Bonde CT, Vielfreund L (2001) Buschke-Ollendorff syndrome. Connective tissue nevi in osteopoikilosis. Ugeskr Laeger 8:170–171
Google Scholar
  6. Cohen-Solal M, de Vernejoul MC (2004) Genetics of osteoporosis. Rev Med Interne 25 [Suppl 5]:S526–530
PubMedCrossRefGoogle Scholar
  7. Dahlin DC, Unni KK (1986) Chondroma. In: (eds) Bone tumors, 4th edn. Thomas, Springfield
Google Scholar
  8. Fong KY (2000) The genetics of spondyloarthropathies. Ann Acad Med Singapore 29:370–375
PubMedGoogle Scholar
  9. Goldman AB (1995) Heritable diseases of connective tissue, epiphyseal dysplasia, and related conditions. In: Resnick D, Niwayama K (eds) Diagnosis of bone and joint disorders, 3rd edn. Saunders, Philadelphia
Google Scholar
  10. Groshar D, Rosenbaum M, Rosner I (1997) Enthesopathies, inflammatory spondyloenthesopathies and bone scintigraphy. J Nucl Med 38:2003–2005
PubMedGoogle Scholar
  11. Kahn MA (1988) Ankylosing spondylitis and heterogeneity of HLA-B27. Semin Arthritis Rheum 18:134–141
CrossRefGoogle Scholar
  12. Kim SH, Chung SK, Bahk YW, et al (1999) Whole-body and pinhole bone scintigraphic manifestations of Reiter’s syndrome: distribution patterns and early and characteristic signs. Eur J Nucl Med 26:163–170
PubMedCrossRefGoogle Scholar
  13. Leirisalo M, Skylv G, Kousa M, et al (1982) Follow-up study on patients with Reiter’s disease and reactive arthritis, with special reference to HLA-B27. Arthritis Rheum 25:249–259
PubMedCrossRefGoogle Scholar
  14. McAlister WH, Herman TE (1995) Osteochondrodysplasias, dysostoses, chromosomal aberrations, mucopolysaccharidoses, and mucolipidoses. In: Resnick D, Niwayama G (eds) Diagnosis of bone and joint disorders, 3rd edn. Philadelphia, Saunders
Google Scholar
  15. McCarty DJ, Gatter RA (1966) Recurrent acute inflammation associated with focal apatite crystal deposition. Arthritis Rheum 9:804–819
PubMedCrossRefGoogle Scholar
  16. Medina M, Viglietti AL, Gozzeli L, et al (2000) Indium111 labelled white blood cell scintigraphy in cranial and spinal septic lesions. Eur J Nucl Med 27:1473–1480
PubMedCrossRefGoogle Scholar
  17. Morris R, Metzger AL, Bluestone R, et al (1974) HL-A W27 – A clue to the diagnosis and pathogenesis of Reiter’s syndrome. New Engl J Med 290:554–556
PubMedCrossRefGoogle Scholar
  18. Mullaji AB, Emery RJH, Joysey VC, et al (1993) HLA and slipped capital femoral epiphysis. J Orthop Rheumatol 6:167–169
Google Scholar
  19. Ochsner PE (1978) Multiple cartilaginous exostoses and neoplastic degeneration: review of the literature. Z Orthop Ihre Grenzgeb 116:369–378
PubMedGoogle Scholar
  20. Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of osteoporosis. Endocr Rev 23:303–326
PubMedCrossRefGoogle Scholar
  21. Pierz KA, Stieber JR, Kusumi K, Dormans JP (2002) Hereditary multiple exostoses: one center’s experience and review of etiology. Clin Orthop Relat Res 401:49–59
PubMedCrossRefGoogle Scholar
  22. Pinals RS, Short CL (1965) Calcific periarthritis involving multiple sites. Arthritis Rheum 8:462
Google Scholar
  23. Rambeloarisoa J, el Guedj M, Legeai-Mallet L, et al (2002) Hereditary multiple exostoses after 40 years of development: a case report. Rev Med Interne 23:657–664
PubMedCrossRefGoogle Scholar
  24. Roodman GD, Windle JJ (2005) Paget disease of bone. J Clin Invest 115:200–208
PubMedGoogle Scholar
  25. Rubin (1964) Dynamic classification of bone dysplasias. Year Book Medical Publishers, Chicago
Google Scholar
  26. Shapiro RF, Utsinger PD, Wiesner KB, et al (1976) The association of HL-A B27 with Forestier’s disease (vertebral ankylosing hyperostosis). J Rheumatol 3:4–8
PubMedGoogle Scholar
  27. Shi YR, Wu JY, Hsu YA, et al (2002) Mutation screening of the EXT genes in patients with hereditary multiple exostoses in Taiwan. Genet Test 6:237–243
PubMedCrossRefGoogle Scholar
  28. Taranta A, Migliaccio S, Recchia I, et al (2003) Genotype-phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162:57–68
PubMedCrossRefGoogle Scholar
  29. Williams PL, Warwick R, Dyson M, Bannister LA (1989) Gray’s anatomy, 37th edn. Churchill Livingstone, Edinburgh
Google Scholar
  30. Wordsworth P (1995) Genes and arthritis. Br Med Bull 51:249–266PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Depart. of Nuclear Med. and RadiologySun Ae General HospitalSeoulKorea, Republic of

Personalised recommendations