A New Soft Decision Tracing Algorithm for Binary Fingerprinting Codes

  • Minoru Kuribayashi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7038)


The performance of fingerprinting codes has been studied under the well-known marking assumption. In a realistic environment, however, a pirated copy will be distorted by an additional attack. Under the assumption that the distortion is modeled as AWGN, a soft decision method for a tracing algorithm has been proposed and the traceability has been experimentally evaluated. However, the previous soft decision method works directly with a received signal without considering the communication theory. In this study, we calculate the likelihood of received signal considering a posterior probability, and propose a soft decision tracing algorithm considering the characteristic of Gaussian channel. For the estimation of channel, we employ the expectation-maximization algorithm by giving constraints under the possible collusion strategies. We also propose an equalizer to give a proper weighting parameter for calculating a correlation score.


Central Limit Theorem Gaussian Mixture Model Correlation Score Hard Decision Gaussian Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Škorić, B., Vladimirova, T.U., Celik, M., Talstra, J.C.: Tardos fingerprinting is better than we thought. IEEE Trans. Inform. Theory 54(8), 3663–3676 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Furon, T., Guyader, A., Cérou, F.: On the design and optimization of Tardos probabilistic fingerprinting codes. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 341–356. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Furon, T., Preire, L.P.: EM decoding of Tardos traitor tracing codes. ACM Multimedia and Security, 99–106 (2009)Google Scholar
  5. 5.
    Furon, T., Preire, L. P., Guyader, A., Cérou, F.: Estimating the minimal length of Tardos code. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 176–190. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Kuribayashi, M.: Experimental assessment of probabilistic fingerprinting codes over AWGN channel. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 117–132. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Kuribayashi, M.: Tardos’s fingerprinting code over AWGN channel. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 103–117. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Kuribayashi, M., Morii, M.: Systematic generation of Tardos’s fingerprinting codes. IEICE Trans. Fundamentals E93-A(2), 508–515 (2009)CrossRefGoogle Scholar
  9. 9.
    Nuida, K.: Making collusion-secure codes (more) robust against bit erasure. eprint 549, 2009 (2009)Google Scholar
  10. 10.
    Nuida, K., Fujitu, S., Hagiwara, M., Kitagawa, T., Watanabe, H., Ogawa, K., Imai, H.: An improvement of discrete Tardos fingerprinting codes. Designs, Codes and Cryptography 52(3), 339–362 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    Nuida, K., Hagiwara, M., Watanabe, H., Imai, H.: Optimization of Tardos’s fingerprinting codes in a viewpoint of memory amount. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 279–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Simone, A., Skoric, B.: Accusation probabilities in Tardos codes: the Gaussian approximation is better than we thought. Cryptology ePrint Archive, Report 2010/472 (2010),
  13. 13.
    Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM 55(2), 1–24 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wu, M., Trappe, W., Wang, Z.J., Liu, K.J.R.: Collusion resistant fingerprinting for multimedia. IEEE Signal Processing Mag., 15–27 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Minoru Kuribayashi
    • 1
  1. 1.Graduate School of EngineeringKobe UniversityKobeJapan

Personalised recommendations