General Introduction

  • Matthias J. N. Junk
Part of the Springer Theses book series (Springer Theses)


Amphiphilicity is a key structure forming element in many biological and synthetic systems. In the most general definition, it describes any chemical or structural contrast within a molecule, such as polar/non-polar, hydrocarbon/fluorocarbon, oligosiloxane/hydrocarbon or rigid/flexible. In this thesis, the amphiphilicity in its original definition is studied, namely the chimeric affinity of molecules for water due to hydrophilic and hydrophobic groups. In particular, amphiphiles have a tendency to self-assemble into larger structures due to partly non-favorable interactions with a solvent.


Electron Paramagnetic Resonance Human Serum Albumin Cholic Acid Spin Probe Dynamic Nuclear Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zana R (ed) (2005) Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases, surfactant science series, vol 25. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Venkatesan P, Cheng Y, Kahne D (1994) J Am Chem Soc 116:6955–6956CrossRefGoogle Scholar
  3. 3.
    Walker S, Sofia MJ, Kakarla R, Kogan NA, Wierichs L, Longley CB, Bruker K, Axelrod HR, Midha S, Babu S, Kahne D (1996) Proc Natl Acad Sci USA 93:1585–1590CrossRefGoogle Scholar
  4. 4.
    Janout V, Lanier M, Regen SL (1996) J Am Chem Soc 118:1573–1574CrossRefGoogle Scholar
  5. 5.
    Sallas F, Darcy R, (2008) Eur J Org Chem, 957–969Google Scholar
  6. 6.
    Lang S (2002) Curr Opin Colloid Interface Sci 7:12–20CrossRefGoogle Scholar
  7. 7.
    Berti D (2006) Curr Opin Colloid Interface Sci 11:74–78CrossRefGoogle Scholar
  8. 8.
    Lu JR, Zhao XB, Yaseen M (2007) Curr Opin Colloid Interface Sci 12:60–67CrossRefGoogle Scholar
  9. 9.
    Gilbert HF (2000) Basic concepts in biochemistry: a student’s survival guide. McGraw-Hill Book Co, NYGoogle Scholar
  10. 10.
    Schrag JD, Li YG, Cygler M, Lang DM, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, Strickland LC, Dunaway CM, Larson SB, Day J, McPherson A (1997) Structure 5:187–202CrossRefGoogle Scholar
  11. 11.
    Chen Z-J, Pudas R, Sharma S, Smart OS, Juffer AH, Hiltunen JK, Wierenga RK, Haapalainen AM (2008) J Mol Biol 379:830–844CrossRefGoogle Scholar
  12. 12.
    Ghosh D, Griswold J, Erman M, Pangborn W (2009) Nature 457:219–223CrossRefGoogle Scholar
  13. 13.
    Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U (2006) J Mol Biol 357:1211–1225CrossRefGoogle Scholar
  14. 14.
    Nozaki Y, Tanford C (1971) J Biol Chem 246:2211–2217Google Scholar
  15. 15.
    Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Science 229:834–838CrossRefGoogle Scholar
  16. 16.
    Perutz MF, Kendrew JC, Watson HC (1965) J Mol Biol 13:669–678CrossRefGoogle Scholar
  17. 17.
    Eisenberg D, Weiss RM, Terwilliger TC (1982) Nature 299:371–374CrossRefGoogle Scholar
  18. 18.
    Tanford C (1978) Science 200:1012–1018CrossRefGoogle Scholar
  19. 19.
    Wolfenden R (1983) Science 222:1087–1093CrossRefGoogle Scholar
  20. 20.
    Janin J (1979) Nature 277:491–492CrossRefGoogle Scholar
  21. 21.
    Maynard AJ, Sharman GJ, Searle MS (1998) J Am Chem Soc 120:1996–2007CrossRefGoogle Scholar
  22. 22.
    Rees DC, DeAntonio L, Eisenberg D (1989) Science 245:510–513CrossRefGoogle Scholar
  23. 23.
    Sandberg WS, Terwilliger TC (1991) Proc Natl Acad Sci USA 88:1706–1710CrossRefGoogle Scholar
  24. 24.
    Gordon DJ, Balbach JJ, Tycko R, Meredith SC (2004) Biophys J 86:428–434CrossRefGoogle Scholar
  25. 25.
    Krone MG, Hua L, Soto P, Zhou RH, Berne BJ, Shea JE (2008) J Am Chem Soc 130:11066–11072CrossRefGoogle Scholar
  26. 26.
    Roise D, Theiler F, Horvath SJ, Tomich JM, Richards JH, Allison DS, Schatz G (1988) EMBO J 7:649–653Google Scholar
  27. 27.
    Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) J Mol Biol 291:899–911CrossRefGoogle Scholar
  28. 28.
    Catterall WA (2000) Neuron 26:13–25CrossRefGoogle Scholar
  29. 29.
    Martin H, Nowicki L (eds) (1972) Synthese, Struktur und Funktion des Hämoglobins, Hämatologie und Bluttransfusion, Bd. 10. Lehmann, MünchenGoogle Scholar
  30. 30.
    Peters T (1995) All about albumin: biochemistry genetics and medical applications. Academic Press, New YorkGoogle Scholar
  31. 31.
    Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203CrossRefGoogle Scholar
  32. 32.
    Ringsdorf H, Schlarb B, Venzmer J (1988) Angew Chem Int Ed 27:113–158CrossRefGoogle Scholar
  33. 33.
    Kale TS, Klaikherd A, Popere B, Thayumanavan S (2009) Langmuir 25:9660–9670CrossRefGoogle Scholar
  34. 34.
    Khokhlov AR, Khalatur PG (2005) Curr Opin Colloid Interface Sci 10:22–29CrossRefGoogle Scholar
  35. 35.
    Kotz J, Kosmella S, Beitz T (2001) Prog Polym Sci 26:1199–1232CrossRefGoogle Scholar
  36. 36.
    Cao Y, Zhao N, Wu K, Zhu XX (2009) Langmuir 25:1699–1704CrossRefGoogle Scholar
  37. 37.
    Schild HG (1992) Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  38. 38.
    Liu K-H, Chen S-Y, Liu D-M, Liu T-Y (2008) Macromolecules 41:6511–6516CrossRefGoogle Scholar
  39. 39.
    Brustolin F, Goldoni F, Meijer EW, Sommerdijk NAJM (2002) Macromolecules 35:1054–1059CrossRefGoogle Scholar
  40. 40.
    Lienkamp K, Madkour AE, Musante A, Nelson CF, Nüsslein K, Tew GN (2008) J Am Chem Soc 130:9836–9843CrossRefGoogle Scholar
  41. 41.
    Alexandridis P, Hatton TA (1995) Colloid Surf A 96:1–46CrossRefGoogle Scholar
  42. 42.
    Discher DE, Eisenberg A (2002) Science 297:967–973CrossRefGoogle Scholar
  43. 43.
    Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) J Controlled Release 109:169–188CrossRefGoogle Scholar
  44. 44.
    Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Nature 417:424–428CrossRefGoogle Scholar
  45. 45.
    Yu H, Grainger DW (1993) J Appl Polym Sci 49:1553–1563CrossRefGoogle Scholar
  46. 46.
    Gil ES, Hudson SA (2004) Prog Polym Sci 29:1173–1222CrossRefGoogle Scholar
  47. 47.
    Haag R (2004) Angew Chem Int Ed 43:278–282CrossRefGoogle Scholar
  48. 48.
    Haubs M, Ringsdorf H (1985) Angew Chem Int Ed 24:882–883CrossRefGoogle Scholar
  49. 49.
    Saji T, Hoshino K, Aoyagui S (1985) J Am Chem Soc 107:6865–6868CrossRefGoogle Scholar
  50. 50.
    Ghadiali JE, Stevens MM (2008) Adv Mater 20:4359–4363CrossRefGoogle Scholar
  51. 51.
    Yang Z, Liang G, Xu B (2008) Acc Chem Res 41:315–343CrossRefGoogle Scholar
  52. 52.
    Wang Y, Xu H, Zhang X (2009) Adv Mater 21:2849–2864CrossRefGoogle Scholar
  53. 53.
    de las Heras Alarcón C, Pennadam S, Alexander C (2005) Chem Soc Rev 34:276–285CrossRefGoogle Scholar
  54. 54.
    Qiu Y, Park K (2001) Adv Drug Del Rev 53:321–339CrossRefGoogle Scholar
  55. 55.
    Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) J Controlled Release 62:115–127CrossRefGoogle Scholar
  56. 56.
    Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, Yang YY (2007) Adv Funct Mater 17:355–362CrossRefGoogle Scholar
  57. 57.
    Jansen JFGA, de Brabander–van den Berg EMM, Meijer EW (1994) Science 266:1226–1229CrossRefGoogle Scholar
  58. 58.
    Sunder A, Kramer M, Hanselmann R, Mülhaupt R, Frey H (1999) Angew Chem Int Ed 38:3552–3555CrossRefGoogle Scholar
  59. 59.
    Chen Y, Shen Z, Pastor-Perez L, Frey H, Stiriba SE (2005) Macromolecules 38:227–229CrossRefGoogle Scholar
  60. 60.
    Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, LondonGoogle Scholar
  61. 61.
    Schlick S (ed) (2006) Advanced ESR methods in polymer research. Wiley-Interscience, HobokenGoogle Scholar
  62. 62.
    Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, OxfordGoogle Scholar
  63. 63.
    Jeschke G (2002) Macromol Rapid Commun 23:227–246CrossRefGoogle Scholar
  64. 64.
    Hinderberger D, Jeschke G (2006) Site-specific characterization of structure and dynamics of complex materials by EPR spin probes. In: Webb GA (ed) Modern magnetic resonance. Springer, BerlinGoogle Scholar
  65. 65.
    Owenius R, Engstrom M, Lindgren M, Huber M (2001) J Phys Chem A 105:10967–10997CrossRefGoogle Scholar
  66. 66.
    Curry S (2009) Drug Metabol Pharmacokinet 24:342–357CrossRefGoogle Scholar
  67. 67.
    He XM, Carter DC (1992) Nature 358:209–215CrossRefGoogle Scholar
  68. 68.
    Curry S, Mandelkow H, Brick P, Franks N (1998) Nat Struct Biol 5:827–835CrossRefGoogle Scholar
  69. 69.
    Bhattacharya AA, Grüne T, Curry S (2000) J Mol Biol 303:721–732CrossRefGoogle Scholar
  70. 70.
    Luo J, Chen Y, Zhu XX (2007) Synlett 14:2201–2204Google Scholar
  71. 71.
    Luo J, Chen Y, Zhu XX (2009) Langmuir 25:10913–10917CrossRefGoogle Scholar
  72. 72.
    Janout V, Jing BW, Staina IV, Regen SL (2003) J Am Chem Soc 125:4436–4437CrossRefGoogle Scholar
  73. 73.
    Beines PW, Klosterkamp I, Menges B, Jonas U, Knoll W (2007) Langmuir 23:2231–2238CrossRefGoogle Scholar
  74. 74.
    Abragam A, Goldman M (1978) Rep Prog Phys 41:395–467CrossRefGoogle Scholar
  75. 75.
    Li W, Zhang A, Feldman K, Walde P, Schlüter AD (2008) Macromolecules 41:3659–3667CrossRefGoogle Scholar
  76. 76.
    Li W, Zhang A, Schlüter AD (2008) Chem Commun 5523–5525Google Scholar
  77. 77.
    Li W, Wu D, Schlüter AD, Zhang A (2009) J Polym. Sci Part A: Polym Chem 47:6630–6640CrossRefGoogle Scholar
  78. 78.
    Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schlüter AD (2009) Macromolecules 42:7122–7128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany

Personalised recommendations