Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 728 Accesses

Abstract

Amphiphilicity is a key structure forming element in many biological and synthetic systems. In the most general definition, it describes any chemical or structural contrast within a molecule, such as polar/non-polar, hydrocarbon/fluorocarbon, oligosiloxane/hydrocarbon or rigid/flexible. In this thesis, the amphiphilicity in its original definition is studied, namely the chimeric affinity of molecules for water due to hydrophilic and hydrophobic groups. In particular, amphiphiles have a tendency to self-assemble into larger structures due to partly non-favorable interactions with a solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zana R (ed) (2005) Dynamics of surfactant self-assemblies: micelles, microemulsions, vesicles and lyotropic phases, surfactant science series, vol 25. CRC Press, Boca Raton

    Google Scholar 

  2. Venkatesan P, Cheng Y, Kahne D (1994) J Am Chem Soc 116:6955–6956

    Article  CAS  Google Scholar 

  3. Walker S, Sofia MJ, Kakarla R, Kogan NA, Wierichs L, Longley CB, Bruker K, Axelrod HR, Midha S, Babu S, Kahne D (1996) Proc Natl Acad Sci USA 93:1585–1590

    Article  CAS  Google Scholar 

  4. Janout V, Lanier M, Regen SL (1996) J Am Chem Soc 118:1573–1574

    Article  CAS  Google Scholar 

  5. Sallas F, Darcy R, (2008) Eur J Org Chem, 957–969

    Google Scholar 

  6. Lang S (2002) Curr Opin Colloid Interface Sci 7:12–20

    Article  CAS  Google Scholar 

  7. Berti D (2006) Curr Opin Colloid Interface Sci 11:74–78

    Article  CAS  Google Scholar 

  8. Lu JR, Zhao XB, Yaseen M (2007) Curr Opin Colloid Interface Sci 12:60–67

    Article  CAS  Google Scholar 

  9. Gilbert HF (2000) Basic concepts in biochemistry: a student’s survival guide. McGraw-Hill Book Co, NY

    Google Scholar 

  10. Schrag JD, Li YG, Cygler M, Lang DM, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, Strickland LC, Dunaway CM, Larson SB, Day J, McPherson A (1997) Structure 5:187–202

    Article  CAS  Google Scholar 

  11. Chen Z-J, Pudas R, Sharma S, Smart OS, Juffer AH, Hiltunen JK, Wierenga RK, Haapalainen AM (2008) J Mol Biol 379:830–844

    Article  CAS  Google Scholar 

  12. Ghosh D, Griswold J, Erman M, Pangborn W (2009) Nature 457:219–223

    Article  CAS  Google Scholar 

  13. Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U (2006) J Mol Biol 357:1211–1225

    Article  CAS  Google Scholar 

  14. Nozaki Y, Tanford C (1971) J Biol Chem 246:2211–2217

    CAS  Google Scholar 

  15. Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH (1985) Science 229:834–838

    Article  CAS  Google Scholar 

  16. Perutz MF, Kendrew JC, Watson HC (1965) J Mol Biol 13:669–678

    Article  CAS  Google Scholar 

  17. Eisenberg D, Weiss RM, Terwilliger TC (1982) Nature 299:371–374

    Article  CAS  Google Scholar 

  18. Tanford C (1978) Science 200:1012–1018

    Article  CAS  Google Scholar 

  19. Wolfenden R (1983) Science 222:1087–1093

    Article  CAS  Google Scholar 

  20. Janin J (1979) Nature 277:491–492

    Article  CAS  Google Scholar 

  21. Maynard AJ, Sharman GJ, Searle MS (1998) J Am Chem Soc 120:1996–2007

    Article  CAS  Google Scholar 

  22. Rees DC, DeAntonio L, Eisenberg D (1989) Science 245:510–513

    Article  CAS  Google Scholar 

  23. Sandberg WS, Terwilliger TC (1991) Proc Natl Acad Sci USA 88:1706–1710

    Article  CAS  Google Scholar 

  24. Gordon DJ, Balbach JJ, Tycko R, Meredith SC (2004) Biophys J 86:428–434

    Article  CAS  Google Scholar 

  25. Krone MG, Hua L, Soto P, Zhou RH, Berne BJ, Shea JE (2008) J Am Chem Soc 130:11066–11072

    Article  Google Scholar 

  26. Roise D, Theiler F, Horvath SJ, Tomich JM, Richards JH, Allison DS, Schatz G (1988) EMBO J 7:649–653

    CAS  Google Scholar 

  27. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) J Mol Biol 291:899–911

    Article  CAS  Google Scholar 

  28. Catterall WA (2000) Neuron 26:13–25

    Article  CAS  Google Scholar 

  29. Martin H, Nowicki L (eds) (1972) Synthese, Struktur und Funktion des Hämoglobins, Hämatologie und Bluttransfusion, Bd. 10. Lehmann, München

    Google Scholar 

  30. Peters T (1995) All about albumin: biochemistry genetics and medical applications. Academic Press, New York

    Google Scholar 

  31. Carter DC, Ho JX (1994) Adv Protein Chem 45:153–203

    Article  CAS  Google Scholar 

  32. Ringsdorf H, Schlarb B, Venzmer J (1988) Angew Chem Int Ed 27:113–158

    Article  Google Scholar 

  33. Kale TS, Klaikherd A, Popere B, Thayumanavan S (2009) Langmuir 25:9660–9670

    Article  CAS  Google Scholar 

  34. Khokhlov AR, Khalatur PG (2005) Curr Opin Colloid Interface Sci 10:22–29

    Article  CAS  Google Scholar 

  35. Kotz J, Kosmella S, Beitz T (2001) Prog Polym Sci 26:1199–1232

    Article  CAS  Google Scholar 

  36. Cao Y, Zhao N, Wu K, Zhu XX (2009) Langmuir 25:1699–1704

    Article  CAS  Google Scholar 

  37. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  38. Liu K-H, Chen S-Y, Liu D-M, Liu T-Y (2008) Macromolecules 41:6511–6516

    Article  CAS  Google Scholar 

  39. Brustolin F, Goldoni F, Meijer EW, Sommerdijk NAJM (2002) Macromolecules 35:1054–1059

    Article  CAS  Google Scholar 

  40. Lienkamp K, Madkour AE, Musante A, Nelson CF, Nüsslein K, Tew GN (2008) J Am Chem Soc 130:9836–9843

    Article  CAS  Google Scholar 

  41. Alexandridis P, Hatton TA (1995) Colloid Surf A 96:1–46

    Article  CAS  Google Scholar 

  42. Discher DE, Eisenberg A (2002) Science 297:967–973

    Article  CAS  Google Scholar 

  43. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) J Controlled Release 109:169–188

    Article  CAS  Google Scholar 

  44. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Nature 417:424–428

    Article  CAS  Google Scholar 

  45. Yu H, Grainger DW (1993) J Appl Polym Sci 49:1553–1563

    Article  CAS  Google Scholar 

  46. Gil ES, Hudson SA (2004) Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  47. Haag R (2004) Angew Chem Int Ed 43:278–282

    Article  CAS  Google Scholar 

  48. Haubs M, Ringsdorf H (1985) Angew Chem Int Ed 24:882–883

    Article  Google Scholar 

  49. Saji T, Hoshino K, Aoyagui S (1985) J Am Chem Soc 107:6865–6868

    Article  CAS  Google Scholar 

  50. Ghadiali JE, Stevens MM (2008) Adv Mater 20:4359–4363

    Article  CAS  Google Scholar 

  51. Yang Z, Liang G, Xu B (2008) Acc Chem Res 41:315–343

    Article  CAS  Google Scholar 

  52. Wang Y, Xu H, Zhang X (2009) Adv Mater 21:2849–2864

    Article  CAS  Google Scholar 

  53. de las Heras Alarcón C, Pennadam S, Alexander C (2005) Chem Soc Rev 34:276–285

    Article  Google Scholar 

  54. Qiu Y, Park K (2001) Adv Drug Del Rev 53:321–339

    Article  CAS  Google Scholar 

  55. Chung JE, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T (1999) J Controlled Release 62:115–127

    Article  CAS  Google Scholar 

  56. Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, Yang YY (2007) Adv Funct Mater 17:355–362

    Article  CAS  Google Scholar 

  57. Jansen JFGA, de Brabander–van den Berg EMM, Meijer EW (1994) Science 266:1226–1229

    Article  CAS  Google Scholar 

  58. Sunder A, Kramer M, Hanselmann R, Mülhaupt R, Frey H (1999) Angew Chem Int Ed 38:3552–3555

    Article  CAS  Google Scholar 

  59. Chen Y, Shen Z, Pastor-Perez L, Frey H, Stiriba SE (2005) Macromolecules 38:227–229

    Article  CAS  Google Scholar 

  60. Schmidt-Rohr K, Spiess HW (1994) Multidimensional solid-state NMR and polymers. Academic Press, London

    Google Scholar 

  61. Schlick S (ed) (2006) Advanced ESR methods in polymer research. Wiley-Interscience, Hoboken

    Google Scholar 

  62. Schweiger A, Jeschke G (2001) Principles of pulse electron paramagnetic resonance. Oxford University Press, Oxford

    Google Scholar 

  63. Jeschke G (2002) Macromol Rapid Commun 23:227–246

    Article  CAS  Google Scholar 

  64. Hinderberger D, Jeschke G (2006) Site-specific characterization of structure and dynamics of complex materials by EPR spin probes. In: Webb GA (ed) Modern magnetic resonance. Springer, Berlin

    Google Scholar 

  65. Owenius R, Engstrom M, Lindgren M, Huber M (2001) J Phys Chem A 105:10967–10997

    Article  CAS  Google Scholar 

  66. Curry S (2009) Drug Metabol Pharmacokinet 24:342–357

    Article  CAS  Google Scholar 

  67. He XM, Carter DC (1992) Nature 358:209–215

    Article  CAS  Google Scholar 

  68. Curry S, Mandelkow H, Brick P, Franks N (1998) Nat Struct Biol 5:827–835

    Article  CAS  Google Scholar 

  69. Bhattacharya AA, Grüne T, Curry S (2000) J Mol Biol 303:721–732

    Article  CAS  Google Scholar 

  70. Luo J, Chen Y, Zhu XX (2007) Synlett 14:2201–2204

    Google Scholar 

  71. Luo J, Chen Y, Zhu XX (2009) Langmuir 25:10913–10917

    Article  CAS  Google Scholar 

  72. Janout V, Jing BW, Staina IV, Regen SL (2003) J Am Chem Soc 125:4436–4437

    Article  CAS  Google Scholar 

  73. Beines PW, Klosterkamp I, Menges B, Jonas U, Knoll W (2007) Langmuir 23:2231–2238

    Article  CAS  Google Scholar 

  74. Abragam A, Goldman M (1978) Rep Prog Phys 41:395–467

    Article  CAS  Google Scholar 

  75. Li W, Zhang A, Feldman K, Walde P, Schlüter AD (2008) Macromolecules 41:3659–3667

    Article  CAS  Google Scholar 

  76. Li W, Zhang A, Schlüter AD (2008) Chem Commun 5523–5525

    Google Scholar 

  77. Li W, Wu D, Schlüter AD, Zhang A (2009) J Polym. Sci Part A: Polym Chem 47:6630–6640

    Article  CAS  Google Scholar 

  78. Bolisetty S, Schneider C, Polzer F, Ballauff M, Li W, Zhang A, Schlüter AD (2009) Macromolecules 42:7122–7128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias J. N. Junk .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Junk, M.J. (2012). General Introduction. In: Assessing the Functional Structure of Molecular Transporters by EPR Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25135-1_1

Download citation

Publish with us

Policies and ethics