Advertisement

Abstract

In this chapter, some analytic and semi-analytic techniques based on the homotopy analysis method (HAM) are briefly described, including the so-called “homotopy perturbation method”, the optimal homotopy asymptotic method, the spectral homotopy analysis method, the generalized boundary element method, and the generalized scaled boundary finite element method. The relationships between these methods with the HAM are also revealed.

Keywords

Boundary Element Method Perturbation Method Homotopy Analysis Method Homotopy Perturbation Method Deformation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A. 360, 109–113 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  2. Abbasbandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun. Nonlinear Sci. Numer. Simulat. 14, 3530–3536 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  3. Abbasbandy, S., Shivanian, E.: Prediction of multiplicity of solutions of nonlinear boundary value problems — Novel application of homotopy analysis method. Commun. Nonlinear Sci. Numer. Simulat. 15, 3830–3846 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  4. Abbasbandy, S., Shivanian, E.: Predictor homotopy analysis method and its application to some nonlinear problems. Commun. Nonlinear Sci. Numer. Simulat. 16, 2456–2468 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  5. Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Applic. 55, 441–452 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  6. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994).zbMATHGoogle Scholar
  7. Akyildiz, F.T., Vajravelu, K.: Magnetohydrodynamic flow of a viscoelastic fluid. Phys. Lett. A. 372, 3380–3384 (2008).zbMATHCrossRefGoogle Scholar
  8. Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I.: Asymptotic Approaches in Nonlinear Dynamics. Springer, Berlin (1998).zbMATHCrossRefGoogle Scholar
  9. Doherty, J.P., Deeks, A.J.: Adaptive coupling of the finite-element and scaled boundary finite-element methods for non-linear analysis of unbounded media. Comput. Geotech. 32, 436–444 (2005).CrossRefGoogle Scholar
  10. Don, W.S., Solomonoff, A.: Accuracy and speed in computing the Chebyshev collocation derivative. SIAM J. Sci. Comput. 16, 1253–1268 (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ganji, D.D., Tari, H., Jooybari, M.B.: Variational iteration method and homotopy perturbation method for nonlinear evaluation equations. Comput. Math. Appl. 54, 1018–1027 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  12. Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A. 361, 316–322 (2007).zbMATHCrossRefGoogle Scholar
  13. He, J.H.: An approximate solution technique depending upon an artificial parameter. Commun. Nonlinear Sci. Numer. Simulat. 3, 92–97 (1998).zbMATHCrossRefGoogle Scholar
  14. He, J.H.: Homotopy perturbation technique. Comput. Method. Appl. M. 178, 257–262 (1999).zbMATHCrossRefGoogle Scholar
  15. Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1953).zbMATHGoogle Scholar
  16. Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-walled Structures (in Russian). Mashinostroyenie, Moscow (1990).Google Scholar
  17. Liang, S.X., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evalution equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 4057–4064 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  18. Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (1992).Google Scholar
  19. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II) — An application in fluid mechanics. Int. J. Nonlin. Mech. 32, 815–822 (1997a).zbMATHCrossRefGoogle Scholar
  20. Liao, S.J.: General boundary element method for nonlinear heat transfer problems governed by hyperbolic heat conduction equation. Computational Mechanics. 20, 397–406 (1997b).zbMATHCrossRefGoogle Scholar
  21. Liao, S.J.: Boundary element method for general nonlinear differential operators. Engineering Analysis with Boundary Elements. 20, 91–99 (1997c).CrossRefGoogle Scholar
  22. Liao, S.J.: Numerically solving nonlinear problems by the homotopy analysis method. Computational Mechanics. 20, 530–540 (1997d).zbMATHCrossRefGoogle Scholar
  23. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlin. Mech. 34, 759–778 (1999).zbMATHCrossRefGoogle Scholar
  24. Liao, S.J.: Beyond Perturbation — Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003).CrossRefGoogle Scholar
  25. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  26. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010).zbMATHCrossRefGoogle Scholar
  27. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007).MathSciNetCrossRefGoogle Scholar
  28. Lin, Z.L., Liao, S.J.: The scaled boundary FEM for nonlinear problems. Commun. Nonlinear. Sci. Numer. Simulat. 16, 63–75 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  29. Lyapunov, A.M.: General Problem on Stability of Motion (English translation). Taylor & Francis, London (1992).Google Scholar
  30. Marinca, V., Herisanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass. 35, 710–715 (2008).CrossRefGoogle Scholar
  31. Marinca, V., Herisanu, N.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plat. Appl. Math. Lett. 22, 245–251 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  32. Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simulat. 15, 2293–2302 (2010a).MathSciNetzbMATHCrossRefGoogle Scholar
  33. Motsa, S.S., Sibanda, P., Auad, F.G., Shateyi, S.: A new spectral homotopy analysis method for the MHD Jeffery-Hamel problem. Computer & Fluids. 39, 1219–1225 (2010b).CrossRefGoogle Scholar
  34. Niu, Z., Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2026–2036 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  35. Sajid, M., Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal. B. 9, 2296–2301 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  36. Sen, S.: Topology and Geometry for Physicists. Academic Press, Florida (1983).zbMATHGoogle Scholar
  37. Song, C., Wolf, J.P.: The scaled boundary finite-element method — Alias consistent infinitesimal finite-element cell method for elastodynamics. Comput. Meth. Appl. Mech. Eng. 147, 329–355 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  38. Tao, L., Song, H., Chakrabarti, S.: Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder. Comput. Meth. Appl. Mech. Eng. 197, 232–242 (2007).zbMATHCrossRefGoogle Scholar
  39. Turkyilmazoglu, M.: Some issues on HPM and HAM methods — A convergence scheme. Math. Compu. Modelling. 53, 1929–1936 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  40. Wolf, J.P.: The scaled boundary finite-element method. Wiley, Chichester (2003).Google Scholar
  41. Wolf, J.P., Song, C.: The scaled boundary finite-element method — A primer: Derivation. Comput. Struct. 78, 191–210 (2000).CrossRefGoogle Scholar
  42. Wolf, J.P., Song, C.: The scaled boundary finite-element method — A fundamental solution-less boundary-element method. Comput. Meth. Appl. Mech. Eng. 190, 5551–5568 (2001).CrossRefGoogle Scholar
  43. Wu, Y.Y, Liao, S.J.: Solving high Reynolds-number viscous flows by the general BEM and domain decomposition method. Int. J. Numer. Methods in Fluids. 47, 185–199 (2005).zbMATHCrossRefGoogle Scholar
  44. Yabushita, K., Yamashita, M., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A — Math. Theor. 40, 8403–8416 (2007).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shijun Liao
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations