Resonance of Arbitrary Number of Periodic Traveling Water Waves

  • Shijun Liao

Abstract

In this chapter, we verify the validity of the homotopy analysis method (HAM) for a rather complicated nonlinear PDE describing the nonlinear interaction of arbitrary number of traveling water waves. In the frame of the HAM, the waveresonance criterion for arbitrary number of waves is gained, for the first time, which logically contains the famous Phillips’ criterion for four small amplitude waves. Besides, it is found for the first time that, when the wave-resonance criterion is satisfied and the wave system is fully developed, there exist multiple steady-state resonant waves, whose amplitude might be much smaller than primary waves so that a resonant wave may contain much small percentage of the total wave energy. This example illustrates that the HAM can be used as a tool to deepen and enrich our understandings about some rather complicated nonlinear phenomena.

Keywords

Gravity Wave Water Wave Homotopy Analysis Method Wave Component Wave Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adcock, T.A.A., Taylor, P.H.: Focusing of unidirectional wave groups on deep water: an approximate nonlinear Schrödinger equation-based model. Proceedings of the Royal Society:A 465, 3083–3102 (2009).MathSciNetMATHCrossRefGoogle Scholar
  2. Annenkov, S.Y., Shrira, V.I.: Role of non-resonant interactions in the evolution of nonlinear random water wave fields. J. Fluid Mech. 561, 181–207 (2006).MathSciNetMATHCrossRefGoogle Scholar
  3. Benney, D.T.: Non-linear gravity wave interactions. J. Fluid Mech. 14, 577–584 (1962).MathSciNetMATHCrossRefGoogle Scholar
  4. Bretherton, F.P.: Resonant interactions between waves: the case of discrete oscillations. J. Fluid Mech. 20, 457–479 (1964).MathSciNetCrossRefGoogle Scholar
  5. Gibbs, R.H., Taylor, P.H.: Formation of walls of water in “fully” nonlinear simulations. Applied Ocean Research 27, 142–257 (2005).CrossRefGoogle Scholar
  6. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B-Fluids. 22, 603–634 (2003).MathSciNetMATHCrossRefGoogle Scholar
  7. Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (1992).Google Scholar
  8. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II)-An application in fluid mechanics. Int. J. Nonlin. Mech. 32, 815–822 (1997).MATHCrossRefGoogle Scholar
  9. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlin. Mech. 34, 759–778 (1999a).MATHCrossRefGoogle Scholar
  10. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999b).MathSciNetCrossRefGoogle Scholar
  11. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003a).MathSciNetMATHCrossRefGoogle Scholar
  12. Liao, S.J.: Beyond Perturbation-Introduction to the Homotopy Analysis Method. Chapman & Hall/ CRC Press, Boca Raton (2003b).CrossRefGoogle Scholar
  13. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004).MathSciNetMATHCrossRefGoogle Scholar
  14. Liao, S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Tran. 48, 2529–2539 (2005).MATHCrossRefGoogle Scholar
  15. Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 2529–2539 (2006).CrossRefGoogle Scholar
  16. Liao, S.J.: Notes on the homotopy analysis method-Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009).MATHCrossRefGoogle Scholar
  17. Liao, S.J.: On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simulat. 15, 1421–1431 (2010a). doi:10.1016/j.cnsns.2009.06.008.MATHCrossRefGoogle Scholar
  18. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010b).MATHCrossRefGoogle Scholar
  19. Liao, S.J.: On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves. Commun. Nonlinear Sci. Numer. Simulat. 16, 1274–1303 (2011).MATHCrossRefGoogle Scholar
  20. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002).MathSciNetMATHCrossRefGoogle Scholar
  21. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007).MathSciNetCrossRefGoogle Scholar
  22. Longuet-Higgins, M.S.: Resonant interactions between two trains of gravity waves. J. Fluid Mech. 12, 321–332 (1962).MathSciNetMATHCrossRefGoogle Scholar
  23. Longuet-Higgins, M.S., Smith, N.D.: An experiment on third order resonant wave interactions. J. Fluid Mech. 25, 417–435 (1966).CrossRefGoogle Scholar
  24. McGoldrick, L.F., Phillips, O.M., Huang, N., Hodgson, T.: Measurements on resonant wave interactions. J. Fluid Mech. 25, 437–456 (1966).CrossRefGoogle Scholar
  25. Phillips, O.M.: On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions. J. Fluid Mech. 9, 193–217 (1960).MathSciNetMATHCrossRefGoogle Scholar
  26. Phillips, O.M.:Wave interactions-the evolution of an idea. J. Fluid Mech. 106, 215–227 (1981).MATHCrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shijun Liao
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations