Advertisement

Abstract

In this chapter, we illustrate the validity of the HAM-based Mathematica package BVPh (version 1.0) for nonlinear partial differential equations (PDEs) related to unsteady boundary-layer flows. We show that, using BVPh 1.0, an unsteady boundary-layer flow can be solved in a rather similar way to that for steady-state similarity ones governed by nonlinear ODEs. In other words, in the frame of the HAM, solving unsteady boundary-layer flows is as easy as steady-state ones. This shows the validity of the BVPh 1.0 for some nonlinear PDEs, especially for those related to boundary-layer flows.

Keywords

Initial Guess Homotopy Analysis Method Nonlinear Partial Differential Equation Linear Partial Differential Equation Local Skin Friction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dennis, S.C.R.: The motion of a viscous fluid past an implusively started semiinfinite flat plate. J. Inst. Math. Appl. 10, 105–117 (1972).zbMATHCrossRefGoogle Scholar
  2. Hall, M.G.: The boundary layer over an impulsively started flat plate. Proc. R. Soc. A. 310, 401–414 (1969).zbMATHCrossRefGoogle Scholar
  3. Li, Y.J., Nohara, B.T., Liao, S.J.: Series solutions of coupled Van der Pol equation by means of homotopy analysis method. J. Mathematical Physics 51, 063517 (2010). doi:10.1063/1.3445770.MathSciNetCrossRefGoogle Scholar
  4. Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (1992).Google Scholar
  5. Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II) — An application in fluid mechanics. Int. J. Nonlin. Mech. 32, 815–822 (1997).zbMATHCrossRefGoogle Scholar
  6. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlin. Mech. 34, 759–778 (1999a).zbMATHCrossRefGoogle Scholar
  7. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999b).MathSciNetzbMATHCrossRefGoogle Scholar
  8. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003a).MathSciNetzbMATHCrossRefGoogle Scholar
  9. Liao, S.J.: Beyond Perturbation — Introduction to the Homotopy Analysis Method. Chapman & Hall/ CRC Press, Boca Raton (2003b).CrossRefGoogle Scholar
  10. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  11. Liao, S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Tran. 48, 2529–2539 (2005).zbMATHCrossRefGoogle Scholar
  12. Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 2529–2539 (2006a).CrossRefGoogle Scholar
  13. Liao, S.J.: An analytic solution of unsteady boundary-layer flows caused by an impulsively stretching plate. Communications in Nonlinear Science and Numerical Simulation. 11, 326–339 (2006b).MathSciNetzbMATHCrossRefGoogle Scholar
  14. Liao, S.J.: Notes on the homotopy analysis method — Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009).zbMATHCrossRefGoogle Scholar
  15. Liao, S.J.: On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simulat. 15, 1421–1431 (2010a). doi:10.1016/j.cnsns.2009.06.008.zbMATHCrossRefGoogle Scholar
  16. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010b).zbMATHCrossRefGoogle Scholar
  17. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  18. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007).MathSciNetCrossRefGoogle Scholar
  19. Nazar, N., Amin, N., Pop, I.: Unsteady boundary layer flow due to stretching surface in a rotating fluid. Mechanics Research Communications. 31, 121–128 (2004).zbMATHCrossRefGoogle Scholar
  20. Pop, I., Na, T.Y.: Unsteady flow past a stretching sheet. Mech. Research Comm. 23, 413 (1996).zbMATHCrossRefGoogle Scholar
  21. Seshadri, R., Sreeshylan, N., Nath, G.: Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion. Int. J. Heat and Mass Transfer. 45, 1345–1352 (2002).zbMATHCrossRefGoogle Scholar
  22. Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid (Part I). Quart. J. Mech. Appl. Math. 4, 182–198 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  23. Stewartson, K.: On the impulsive motion of a flat plate in a viscous fluid (Part II). Quart. J. Mech. Appl. Math. 22, 143–152 (1973).CrossRefGoogle Scholar
  24. Wang, C.Y., Du, G., Miklavcic, M., Chang, C.C.: Impulsive stretching of a surface in a viscous fluid. SIAM J. Appl. Math. 57, 1 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  25. Watkins, C.B.: Heat transfer in the boundary layer over an implusively started flat plate. J. Heat Transfer. 97, 482–284 (1975).CrossRefGoogle Scholar
  26. Williams, J.C., Rhyne, T.H.: Boundary layer development on a wedge impulsively set into motion. SIAM J. Appl. Math. 38, 215–224 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  27. Xu, H., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy-based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Physics of Fluids. 22, 053601 (2010). doi:10.1063/1.3392770.CrossRefGoogle Scholar

Copyright information

© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shijun Liao
    • 1
  1. 1.Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations