Skip to main content

Abstract

It is well-known that nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) for boundary-value problems are much more difficult to solve than linear ODEs and PDEs, especially by means of analytic methods. Traditionally, perturbation (Van del Pol, 1926; Von Dyke, 1975; Nayfeh, 2000) and asymptotic techniques are widely applied to obtain analytic approximations of nonlinear problems in science, finance and engineering. Unfortunately, perturbation and asymptotic techniques are too strongly dependent upon small/large physical parameters in general, and thus are often valid only for weakly nonlinear problems. For example, the asymptotic/perturbation approximations of the optimal exercise boundary of American put option are valid only for a couple of days or weeks prior to expiry, as shown in Fig. 1.1. Another famous example is the viscous flow past a sphere in fluid mechanics: the perturbation formulas of the drag coefficient are valid only for rather small Reynolds number Re ≪ 1. Thus, it is necessary to develop some analytic approximation methods, which are independent of any small/large physical parameters at all and besides valid for strongly nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, Z., Wang, Y., Hayat, T., Oberlack, M.: Hydromagnetic flow in a viscoelstic fluid due to the oscillatory stretching surface. Int. J. Nonlin. Mech. 43, 783–793 (2008).

    Article  MATH  Google Scholar 

  • Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A. 360, 109–113 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy, S.: The application of homotopy analysis method to solve a generalized HirotaSatsuma coupled KdV equation. Phys. Lett. A. 361, 478–483 (2007).

    Article  MATH  Google Scholar 

  • Abbasbandy, S.: Solitary wave equations to the Kuramoto-Sivashinsky equation by means of the homotopy analysis method. Nonlinear Dynam. 52, 35–40 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy, S., Magyari, E., Shivanian, E.: The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Communications in Nonlinear Science and Numerical Simulation. 14, 3530–3536 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy, S., Parkes, E.J.: Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method. Chaos Soliton. Fract. 36, 581–591 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy, S., Parkes, E.J.: Solitary-wave solutions of the DegasperisProcesi equation by means of the homotopy analysis method. Int. J. Comp. Math. 87, 2303–2313 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy, S., Shivanian, E.: Predictor homotopy analysis method and its application to some nonlinear problems. Commun. Nonlinear Sci. Numer. Simulat. 16, 2456–2468 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Abell, M.L., Braselton, J.P.: Mathematica by Example (3rd Edition). Elsevier Academic Press. Amsterdam (2004).

    Google Scholar 

  • Adomian, G.: Nonlinear stochastic differential equations. J. Math. Anal. Applic. 55, 441–452 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  • Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston (1994).

    MATH  Google Scholar 

  • Agnew, R.P.: Euler transformations. Journal of Mathematics. 66, 313–338 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  • Akyildiz, F.T., Vajravelu, K.: Magnetohydrodynamic flow of a viscoelastic fluid. Phys. Lett. A. 372, 3380–3384 (2008).

    Article  MATH  Google Scholar 

  • Akyildiz, F.T., Vajravelu, K., Mohapatra, R.N., Sweet, E., Van Gorder, R.A.: Implicit differential equation arising in the steady flow of a Sisko fluid. Applied Mathematics and Computation. 210, 189–196 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Alizadeh-Pahlavan, A., Aliakbar, V., Vakili-Farahani, F., Sadeghy, K.: MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method. Commun. Nonlinear Sci. Numer. Simulat. 14, 473–488 (2009).

    Article  MATH  Google Scholar 

  • Alizadeh-Pahlavan, A., Borjian-Boroujeni, S.: On the analytical solution of viscous fluid flow past a flat plate. Physics Letters A. 372, 3678–3682 (2008).

    Article  MATH  Google Scholar 

  • Allan, F.M.: Derivation of the Adomian decomposition method using the homotopy analysis method. Appl. Math. Comput. 190, 6–14 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  • Allan, F.M.: Construction of analytic solution to chaotic dynamical systems using the homotopy analysis method. Chaos, Solitons and Fractals. 39, 1744–1752 (2009).

    Article  MATH  Google Scholar 

  • Allan, F.M., Syam, M.I.: On the analytic solutions of the nonhomogeneous Blasius problem. J. Comp. Appl. Math. 182, 362–371 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  • Bunch, D.S., Johnson, H.: The American put option and its critical stock price. Journal of Finance. 5, 2333–2356 (2000).

    Article  Google Scholar 

  • Cai, W.H.: Nonlinear Dynamics of Thermal-Hydraulic Networks. PhD dissertation, University of Notre Dame (2006).

    Google Scholar 

  • Cheng, J.: Application of the Homotopy Analysis Method in Nonlinear Mechanics and Finance. PhD dissertation, Shanghai Jiao Tong University (2008).

    Google Scholar 

  • Cheng, J., Zhu, S.P., Liao, S.J.: An explicit series approximation to the optimal exercise boundary of American put options. Communications in Nonlinear Science and Numerical Simulation. 15, 1148–1158 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, L.M.: Analysis of the Propagation of Surface Acoustic Waves in Functionally Graded Material Plate. PhD dissertation, Tong Ji University (2007).

    Google Scholar 

  • Hayat, T., Khan, M., Asghar, S.: Magnetohydrodynamic flow of an Oldroyd 6-constant fluid. Applied Mathematics and Computation. 155, 417–425 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  • Hayat, T., Khan, M., Ayub, M.: On non-linear flows with slip boundary condition. Z. angew. Math. Phys. 56, 1012–1029 (2005).

    Article  MathSciNet  Google Scholar 

  • Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A. 361, 316–322 (2007).

    Article  MATH  Google Scholar 

  • Hayat, T., Sajjad, R., Abbas, Z., Sajid, M., Hendi, A.A.: Radiation effects on MHD flow of Maxwell fluid in a channel with porous medium. Int. J. heat Mass Transfer. 54, 854–862 (2011).

    Article  MATH  Google Scholar 

  • Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1953).

    MATH  Google Scholar 

  • Jiao, X.Y.: Approximate Similarity Reduction and Approximate Homotopy Similarity Reduction of Several Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (2009).

    Google Scholar 

  • Jiao, X.Y., Gao, Y., Lou, S.Y.: Approximate homotopy symmetry method-Homotopy series solutions to the sixth-order Boussinesq equation. Science in China (G). 52, 1169–1178 (2009).

    Article  Google Scholar 

  • Karmishin, A.V., Zhukov, A.T., Kolosov, V.G.: Methods of Dynamics Calculation and Testing for Thin-walled Structures (in Russian). Mashinostroyenie, Moscow (1990).

    Google Scholar 

  • Knessl, C.: A note on a moving boundary problem arising in the American put option. Studies in Applied Mathematics. 107, 157–183 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  • Kumari, M., Nath, G.: Unsteady MHD mixed convection flow over an impulsively stretched permeable vertical surface in a quiescent fluid. Int. J. Non-Linear Mech. 45, 310–319 (2010).

    Article  Google Scholar 

  • Kumari, M., Pop, I., Nath, G.: Transient MHD stagnation flow of a non-Newtonian fluid due to impulsive motion from rest. Int. J. Non-Linear Mech. 45, 463–473 (2010).

    Article  Google Scholar 

  • Kuske, R.A., Keller, J.B.: Optional exercise boundary for an American put option. Applied Mathematical Finance. 5, 107–116 (1998).

    Article  MATH  Google Scholar 

  • Li, Y.J., Nohara, B.T., Liao, S.J.: Series solutions of coupled Van der Pol equation by means of homotopy analysis method. J. Mathematical Physics 51, 063517 (2010). doi:10.1063/1.3445770.

    Article  MathSciNet  Google Scholar 

  • Liang, S.X.: Symbolic Methods for Analyzing Polynomial and Differential Systems. PhD dissertation, University of Western Ontario (2010).

    Google Scholar 

  • Liang, S.X., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evalution equation. Commun. Nonlinear Sci. Numer. Simulat. 14, 4057–4064 (2009a).

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, S.X., Jeffrey, D.J.: An efficient analytical approach for solving fourth order boundary value problems. Computer Physics Communications. 180, 2034–2040 (2009b).

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, S.X., Jeffrey, D.J.: Approximate solutions to a parameterized sixth order boundary value problem. Computers and Mathematics with Applications. 59, 247–253 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, S.J.: The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. PhD dissertation, Shanghai Jiao Tong University (1992).

    Google Scholar 

  • Liao, S.J.: A kind of approximate solution technique which does not depend upon small parameters (II) — An application in fluid mechanics. Int. J. Nonlin. Mech. 32, 815–822 (1997).

    Article  MATH  Google Scholar 

  • Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Nonlin. Mech. 34, 759–778 (1999a).

    Article  MATH  Google Scholar 

  • Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999b).

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003a).

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, S.J.: Beyond Perturbation — Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003b).

    Book  Google Scholar 

  • Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, S.J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate. Int. J. Heat Mass Tran. 48, 2529–2539 (2005).

    Article  MATH  Google Scholar 

  • Liao, S.J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate. Stud. Appl. Math. 117, 2529–2539 (2006).

    Article  Google Scholar 

  • Liao, S.J.: Notes on the homotopy analysis method — Some definitions and theorems. Commun. Nonlinear Sci. Numer. Simulat. 14, 983–997 (2009a).

    Article  MATH  Google Scholar 

  • Liao, S.J.: On the reliability of computed chaotic solutions of non-linear differential equations. Tellus. 61A, 550–564 (2009b).

    Google Scholar 

  • Liao, S.J.: On the relationship between the homotopy analysis method and Euler transform. Commun. Nonlinear Sci. Numer. Simulat. 15, 1421–1431 (2010a).

    Article  MATH  Google Scholar 

  • Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2003–2016 (2010b).

    Article  MATH  Google Scholar 

  • Liao, S.J.: On the homotopy multiple-variable method and its applications in the interactions of nonlinear gravity waves. Commun. Nonlinear Sci. Numer. Simulat. 16, 1274–1303 (2011).

    Article  MATH  Google Scholar 

  • Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, S.J., Magyari, E.: Exponentially decaying boundary layers as limiting cases of families of algebraically decaying ones. Z. angew. Math. Phys. 57, 777–792 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007).

    Article  MathSciNet  Google Scholar 

  • Liu, Y.P.: Study on Analytic and Approximate Solution of Differential equations by Symbolic Computation. PhD Dissertation, East China Normal University (2008).

    Google Scholar 

  • Liu, Y.P., Li, Z.B.: The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation. Chaos Soliton. Fract. 39, 1–8 (2009).

    Article  Google Scholar 

  • Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  • Lyapunov, A.M.: General Problem on Stability of Motion (English translation). Taylor & Francis, London (1992).

    Google Scholar 

  • Mahapatra, T. R., Nandy, S.K., Gupta, A.S.: Analytical solution of magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Applied Mathematics and Computation. 215, 1696–1710 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Marinca, V., Herisanu, N.: Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer. Int. Commun. Heat Mass. 35, 710–715 (2008).

    Article  Google Scholar 

  • Marinca, V., Herisanu, N.: An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plat. Appl. Math. Lett. 22, 245–251 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Molabahrami, A., Khani, F.: The homotopy analysis method to solve the Burgers-Huxley equation. Nonlin. Anal. B. 10, 589–600 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simulat. 15, 2293–2302 (2010a).

    Article  MathSciNet  MATH  Google Scholar 

  • Motsa, S.S., Sibanda, P., Auad, F.G., Shateyi, S.: A new spectral homotopy analysis method for the MHD Jeffery-Hamel problem. Computer & Fluids. 39, 1219–1225 (2010b).

    Article  Google Scholar 

  • Nayfeh, A.H.: Perturbation Methods. John Wiley & Sons, New York (2000).

    Book  MATH  Google Scholar 

  • Niu, Z., Wang, C.: A one-step optimal homotopy analysis method for nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simulat. 15, 2026–2036 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Pandey, R.K., Singh, O.P., Baranwal, V.K.: An analytic algorithm for the space — time fractional advection-dispersion equation. Computer Physics Communications. 182, 1134–1144 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Pirbodaghi, T., Ahmadian, M.T., Fesanghary, M.: On the homotopy analysis method for non-linear vibration of beams. Mechanics Research Communications. 36, 143–148 (2009).

    Article  Google Scholar 

  • Sajid, M.: Similar and Non-Similar Analytic Solutions for Steady Flows of Differential Type Fluids. PhD dissertation, Quaid-I-Azam University (2006).

    Google Scholar 

  • Sajid, M., Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal. B. 9, 2296–2301 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Sen, S.: Topology and Geometry for Physicists. Academic Press, Florida (1983).

    MATH  Google Scholar 

  • Shidfar, A., Babaei, A., Molabahrami, A.: Solving the inverse problem of identifying an unknown source term in a parabolic equation. Computers and Mathematics with Applications. 60, 1209–1213 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Shidfar, A., Molabahrami, A.: A weighted algorithm based on the homotopy analysis method-application to inverse heat conduction problems. Commun. Nonlinear Sci. Numer. Simulat. 15, 2908–2915 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  • Siddheshwar, P.G.: A series solution for the Ginzburg-Landau equation with a timeperiodic coefficient. Applied Mathematics. 3, 542–554 (2010). Online available at http://www.SciRP.org/journal/am. Accessed 15 April 2011.

    Article  Google Scholar 

  • Singh, O.P., Pandey, R.K., Singh, V.K.: An analytic algorithm of LaneEmden type equations arising in astrophysics. using modified homotopy analysis method. Computer Physics Communications. 180, 1116–1124 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Song, H., Tao, L.: Homotopy analysis of 1D unsteady, nonlinear groundwater flow through porous media. J. Coastal Res. 50, 292–295 (2007).

    Google Scholar 

  • Tao, L., Song, H., Chakrabarti, S.: Nonlinear progressive waves in water of finite depth — An analytic approximation. Coastal Engineering. 54, 825–834 (2007).

    Article  Google Scholar 

  • Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. in Comp. Sci. 1, 9–19 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  • Turkyilmazoglu, M.: Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer. Physics of Fluids. 21, 106104 (2009).

    Article  Google Scholar 

  • Turkyilmazoglu, M.: A note on the homotopy analysis method. Appl. Math. Lett. 23, 1226–1230 (2010a).

    Article  MathSciNet  MATH  Google Scholar 

  • Turkyilmazoglu, M.: Series solution of nonlinear two-point singularly perturbed boundary layer problems. Computers and Mathematics with Applications. 60, 2109–2114 (2010b).

    Article  MathSciNet  MATH  Google Scholar 

  • Turkyilmazoglu, M.: An optimal analytic approximate solution for the limit cycle of Duffing-van der Pol equation. ASME J. Appl. Mech. 78, 021005 (2011a).

    Article  Google Scholar 

  • Turkyilmazoglu, M.: Numerical and analytical solutions for the flow and heat transfer near the equator of an MHD boundary layer over a porous rotating sphere. Int. J. Thermal Sciences. 50, 831–842 (2011b).

    Article  Google Scholar 

  • Turkyilmazoglu, M.: An analytic shooting-like approach for the solution of nonlinear boundary value problems. Math. Comp. Modelling. 53, 1748–1755 (2011c).

    Article  MathSciNet  MATH  Google Scholar 

  • Turkyilmazoglu, M.: Some issues on HPM and HAM methods — A convergence scheme. Math. Compu. Modelling. 53, 1929–1936 (2011d).

    Article  MathSciNet  MATH  Google Scholar 

  • Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation. Phys. Lett. A. 372, 6060–6065 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Van Gorder, R.A., Sweet, E., Vajravelu, K.: Analytical solutions of a coupled nonlinear system arising in a flow between stretching disks. Applied Mathematics and Computation. 216, 1513–1523 (2010a).

    Article  MathSciNet  MATH  Google Scholar 

  • Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simulat. 15, 1494–1500 (2010b).

    Article  MATH  Google Scholar 

  • Van Gorder, R.A., Vajravelu, K.: Convective heat transfer in a conducting fluid over a permeable stretching surface with suction and internal heat generation/ absorption. Applied Mathematics and Computation. 217, 5810–5821 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  • Van del Pol: On oscillation hysteresis in a simple triode generator. Phil. Mag. 43, 700–719 (1926).

    Google Scholar 

  • Von Dyke, M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, Stanford (1975).

    MATH  Google Scholar 

  • Wu, Y.Y.: Analytic Solutions for Nonlinear Long Wave Propagation. PhD dissertation, University of Hawaii (2009).

    Google Scholar 

  • Wu, Y.Y., Cheung, K.F.: Explicit solution to the exact Riemann problems and application in nonlinear shallow water equations. Int. J. Numer. Meth. Fl. 57, 1649–1668 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Y.Y., Cheung, K.F.: Homotopy solution for nonlinear differential equations in wave propagation problems. Wave Motion. 46, 1–14 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, H., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy-based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Physics of Fluids. 22, 053601 (2010). doi:10.1063/1.3392770.

    Article  Google Scholar 

  • Yabushita, K., Yamashita, M., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A — Math. Theor. 40, 8403–8416 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  • Zand, M.M., Ahmadian, M.T., Rashidian, B.: Semi-analytic solutions to nonlinear vibrations of microbeams under suddenly applied voltages. J. Sound and Vibration. 325, 382–396 (2009).

    Article  Google Scholar 

  • Zand, M.M., Ahmadian, M.T: Application of homotopy analysis method in studying dynamic pull-in instability of microsystems. Mechanics Research Communications. 36, 851–858 (2009).

    Article  MATH  Google Scholar 

  • Zhao, J., Wong, H.Y.: A closed-form solution to American options under general diffusions (2008). Available at SSRN: http://ssrn.com/abstract=1158223. Accessed 15 April 2011.

    Google Scholar 

  • Zhu, J.: Linear and Non-linear Dynamical Analysis of Beams and Cables and Their Combinations. PhD dissertation, Zhejiang University (2008).

    Google Scholar 

  • Zhu, S.P.: A closed-form analytical solution for the valuation of convertible bonds with constant dividend yield. ANZIAM J. 47, 477–494 (2006a).

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, S.P.: An exact and explicit solution for the valuation of American put options. Quant. Financ. 6, 229–242 (2006b).

    Article  MATH  Google Scholar 

  • Zou, L.: A Study of Some NonlinearWater Wave Problems Using Homotopy Analysis Method. PhD dissertation, Dalian University of Technology (2008).

    Google Scholar 

  • Zou, L., Zong, Z., Wang, Z., He, L.: Solving the discrete KdV equation with homotopy analysis method. Phys. Lett. A. 370, 287–294 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liao, S. (2012). Introduction. In: Homotopy Analysis Method in Nonlinear Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25132-0_1

Download citation

Publish with us

Policies and ethics