• Eelco Doornbos
Part of the Springer Theses book series (Springer Theses)


Neutral density in the thermosphere is one of the most important variables to model for applications in solar-terrestrial physics and drag computations for satellite orbit determination. Thermospheric density varies over a wide range of spatial and temporal scales under the influence of the complex interactions between the Earth system and solar processes. Unfortunately, observation data on the thermosphere have always been quite sparse and measurement modelling uncertainties have often introduced a relatively high level of ambiguity. These characteristics have made the improvement of thermosphere density models quite a challenge in the past.


European Space Agency Orbit Determination Satellite Laser Range Local Solar Time Manoeuvre Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arduini C, Broglio L, Ponzi U, Laneve G, Marco S (1996) V drag balance neutral density compared to the models. Adv Space Res 18(9–10):351–360. doi: 10.1016/0273-1177(96)-000695 CrossRefGoogle Scholar
  2. 2.
    Arduini C, Laneve G, Herrero FA (1997) Local time and altitude variation of equatorial thermosphere midnight density maximum (MDM): San Marco drag balance measurements. Geophys Res Lett 24(4):377–380. doi: 10.1029/97GL00189 CrossRefGoogle Scholar
  3. 3.
    Arduini C, Laneve G, Ponzi U (1999) New insight on the internal waves in the equatorial thermosphere by the “s. marco 5” spacecraft data. Adv Space Res 24(11):1463–1472. doi: 10.1016/S0273-1177(99)00707-3 CrossRefGoogle Scholar
  4. 4.
    Barlier F, Berger C, Falin JL, Kockarts G, Thuillier G (1978) A thermospheric model based on satellite drag data. Ann Geophys 34(1):9–24Google Scholar
  5. 5.
    Berger C, Barlier F (1981) Asymmetrical structure in the thermosphere during magnetic storms as deduced from the CACTUS accelerometer data. Adv Space Res 1(12):231–235CrossRefGoogle Scholar
  6. 6.
    Berger C, Biancale R, Ill M, Barlier F (1998) Improvement of the empirical thermospheric model DTM: DTM-94—a comparative review of various temporal variations and prospects in space geodesy applications. J Geod 72(3):161–178CrossRefGoogle Scholar
  7. 7.
    Bowman, Bruce R, Tobiska WK, Marcos FA (2006) A new empirical thermospheric density model JB2006 using new solar indices, in AIAA, AIAA, pp 2006–6166Google Scholar
  8. 8.
    Bowman, Bruce R, Tobiska WK, Marcos FA, Huang CY, Lin CS, Burke WJ (2008) A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics specialist conference and exhibit, August 2008, Honolulu, Hawaii, pp 18–21, AIAA 2008–6438Google Scholar
  9. 9.
    Broglio L, Ponzi U, Arduini C (1992) The San Marco 5 mission. Adv Space Res 13(1):165–184CrossRefGoogle Scholar
  10. 10.
    Bruinsma S, Thuillier G, Barlier F (2003) The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J Atmos Sol Terr Phys 65:1053–1070CrossRefGoogle Scholar
  11. 11.
    Bruinsma S, Tamagnan D, Biancale R (2004) Atmospheric densities derived from CHAMP/STAR accelerometer observations. Planet Space Sci 52(4):297–312. doi: 10.1016/j.pss.2003.11.004 CrossRefGoogle Scholar
  12. 12.
    Bruinsma S, Jeffrey M Forbes, R Steven Nerem, Xiaoli Zhang (2006) Thermosphere density response to the 20–21 November 2003 solar and geomagnetic storm from CHAMP and GRACE accelerometer data. J Geophys Res 111(A06303). doi: 10.1029/2005JA011284
  13. 13.
    Bruinsma SL, Exertier P, Biancale R (1999) An assessment of new satellite total density data for improving upper atmosphere models. Planet Space Sci 47:1465–1473CrossRefGoogle Scholar
  14. 14.
    Canuto, E, Bona B, Calafiore G, Indri M (2002) Drag free control for the european satellite GOCE, part I: modelling. In: Proceedings of the 41st IEEE conference on decision and control, Las Vegas, NV, December 2002, number WeA03–6Google Scholar
  15. 15.
    Casali SJ, Barker WN (2002) Dynamic calibration atmosphere (DCA) for the high accuracy satellite drag model (HASDM). In: AIAA/AAS astrodynamics specialist conference and exhibit, Monterey, California, AIAA, 5–8 Aug 2002, pp 2002–4888Google Scholar
  16. 16.
    Cleary MC (1994) The cape: military space operations. 45th SpaceWing History Office, 1971–1992Google Scholar
  17. 17.
    Crowley G (1991) Dynamics of the earth’s thermosphere: a review. Rev Geophys 29(29 suppl):1143–1165Google Scholar
  18. 18.
    Doornbos E, Scharroo R, Klinkrad H, Zandbergen R, Fritsche B (2002) Improved modelling of surface forces in the orbit determination of ERS and envisat. Can J Remote Sens 28(4):535–543CrossRefGoogle Scholar
  19. 19.
    Doornbos E (2004) Calibrated, high accuracy satellite drag model - ESOC contract 16643/02/D/HK(SC) final report. Faculty of Aerospace Engineering Delft University of Technology, Delft The NetherlandsGoogle Scholar
  20. 20.
    Doornbos E (2006) NRTDM final report - near real-time density model (NRTDM) - ESOC contract 18576/04/D/HK(SC). Delft Institute for Earth-Oriented Space Research, The NetherlandsGoogle Scholar
  21. 21.
    Doornbos E, Heiner K, Remko S, Pieter V (2007) Thermosphere density model calibration in the orbit determination and prediction of ERS-2 and Envisat. In: Lacoste H (ed) Envisat symposium montreux, Switzerland, 23–27 April 2007, ESA SP-636Google Scholar
  22. 22.
    Doornbos E, Matthias Förster Bent Fritsche, Tom van Helleputte, Jose van den IJssel, Georg Koppenwallner, Hermann Lühr, David Rees, Pieter Visser (2009) ESTEC contract 21022/07/NL/HE air density models derived from multi-satellite drag observations – final report. DEOS / TU Delft scientific report 01/2009, TU DelftGoogle Scholar
  23. 23.
    Dow JM, Neilan RE, Gendt G (2005) The international GPS service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3):320–326CrossRefGoogle Scholar
  24. 24.
    Falin JL, Kockarts G, Barlier F (1981) Densities from the CACTUS accelerometer as an external test of the validity of the thermospheric models. Adv Space Res 1(12):221–225CrossRefGoogle Scholar
  25. 25.
    Forbes JM, Marcos FA, Kamalabadi F (1995) Wave structures in lower thermosphere density from satellite electrostatic triaxial accelerometer measurements. J Geophys Res 100(A8):14693–14701CrossRefGoogle Scholar
  26. 26.
    Förster M, Haaland SE, Doornbos E (2011) Thermospheric vorticity at high geomagnetic latitudes from CHAMP data and its IMF dependence. Ann Geophys 29(1):181–186. doi: 10.5194/angeo-29-181-2011 CrossRefGoogle Scholar
  27. 27.
    Fu Lee-Lueng, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: A handbook of techniques and applications, Academic PressGoogle Scholar
  28. 28.
    Hanssen RF (2001) Radar interferometry, data interpretation and error analysis vol 2 of remote sensing and digital image processing. Springer, San DiegoGoogle Scholar
  29. 29.
    Hargreaves JK (1992) The solar-terrestrial environment: an introduction to geospace - the science of the terrestrial upper atmosphere, ionosphere and magnetosphere vol 7 of cambridge atmospheric and space science series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. 30.
    Harris I, Wolfgang P (1962) Time-dependent structure of the upper atmosphere. J Atmos Sci 19(4):286–301CrossRefGoogle Scholar
  31. 31.
    Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92(A5):4649–4662CrossRefGoogle Scholar
  32. 32.
    van den IJssel J, Visser P (2005) Determination of non-gravitational accelerations from GPS satellite-to-satellite tracking of CHAMP. Adv Space Res 36(3):418–423CrossRefGoogle Scholar
  33. 33.
    Jacchia LG (1964) Static diffusion models of the upper atmosphere with empirical temperature profiles. Smithsonian astrophysical observatory special report 170Google Scholar
  34. 34.
    Jacchia LG (1972) Atmospheric models in the region from 110 to 2000 km. In: CIRA 1972: COSPAR international reference atmosphere 1972. Akademie-Verlag, Berlin, pp 227–338Google Scholar
  35. 35.
    Jacchia LG, Slowey J (1962) Accurate drag determinations for eight artificial satellites; atmospheric densities and temperatures. Smithsonian Astrophysical Observatory Special Report 100Google Scholar
  36. 36.
    King-Hele D (1987) Satellite orbits in an atmosphere, theory and applications. BlackieGoogle Scholar
  37. 37.
    King-Hele D (1992) A tapestry of orbits. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  38. 38.
    Klinkrad H (2006) Space debris, models and risk analysis, Springer, Berlin.Google Scholar
  39. 39.
    Klinkrad, Heiner, Richard Tremayne-Smith, Fernand Alby, Detlef Alwes (2008) Europe’s eyes on the skies. the proposal for a European space surveillance system, ESA Bulletin, (133), Feb 2008Google Scholar
  40. 40.
    Liu H, Lühr H (2005) Strong disturbances of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophy Res 110(A09829). doi: 10.1029/2004JA010908
  41. 41.
    Liu H, Lühr H, Henize V, Köhler W (2005) Global distribution of the thermospheric total mass density derived from CHAMP. J Geophys Res 110(A04301). doi: 10.1029/2004JA010741
  42. 42.
    Liu H-L, Foster BT, Hagan ME, Mcinerney JM, Maute A, Qian L, Richmond AD, Roble RG, Solomon SC, Garcia RR, Kinnison D, Marsh DR, Smith AK, Richter J, Sassi F, Oberheide J (2010) Thermosphere extension of the Whole Atmosphere Community Climate Model. J Geophys Res 115(A12302). doi: 10.1029/2010JA015586
  43. 43.
    Liu, H, Lühr H, Watanabe S, Köhler W, Henize V, Visser P (2006) Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies. J Geophys Res 111(A07307). doi: 10.1029/2005JA011415
  44. 44.
    Liu, H, Lühr H, Watanabe S (2007) Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res 112(A05305). doi: 10.1029/2006JA012199
  45. 45.
    Marcos FA (1990) Accuracy of atmospheric drag models at low satellite altitudes. Adv Space Res 10(3):417–422CrossRefGoogle Scholar
  46. 46.
    Marcos FA, Forbes JM (1985) Thermospheric winds from the satellite electrostatic triaxial accelerometer system. J Geophys Res 90:6543–6552CrossRefGoogle Scholar
  47. 47.
    Marcos FA, Garrett HB, Champion KSW, Forbes JM (1977) Density variations in the lower thermosphere from analysis of the AE-C accelerometer measurements. Planet Space Sci 25(5): 499–507CrossRefGoogle Scholar
  48. 48.
    Marcos FA, Bass JN, Baker CR, Borer WS (1994) Neutral density models for aerospace applications. In: 32nd aerospace sciences meeting and exhibit, 10–13 Jan 1994 / Reno, NVGoogle Scholar
  49. 49.
    Marcos, FA, Swift ER (1982) Application of the satellite triaxial accelerometer experiment to atmospheric density and wind studies. Air Force Geophysics Laboratory, Air Force Systems Command, USAFGoogle Scholar
  50. 50.
    Massonnet D, Kurt LF (1998) Radar interferometry and its applications to changes in the earth’s surface. Rev Geophys 36(4):441–500. doi: 10.1029/97RG03139 CrossRefGoogle Scholar
  51. 51.
    McCoy RP, Kenneth FD, Gilbert GF, Stefan ET, Robert RM, Paul AR (1994) Special sensor ultraviolet limb imager: an ionospheric and neutral density profiler for the defense meteorological satellite program satellites. Opt Eng 33(2):423–429. doi: 10.1117/12.155904 CrossRefGoogle Scholar
  52. 52.
    Owens JK, William WV, Niehuss KO, Minow J (2000) Space weather, earth’s neutral upper atmosphere (thermosphere), and spacecraft orbital lifetime/dynamics. IEEE Trans Plasma Sci 28(6):1920–1930CrossRefGoogle Scholar
  53. 53.
    Paxton LJ, Christensen AB , Humm DC, Ogorzalek BS, Pardoe CT, Morrison D, Weiss MB, Crain W, Lew PH, Mabry DJ, Goldsten JO, Gary SA, Persons DF, Harold MJ, Alvarez EB, Ercol CJ, Strickland DJ, Ching-I M (1999) Global ultraviolet imager (GUVI): measuring composition and energy inputs for the NASA thermosphere ionosphere mesosphere energetics and dynamics (TIMED) mission. Opt Spectrosc Tech Instrum Atmos Space Res III 3756(1):265–276. doi: 10.1117/12.366380
  54. 54.
    Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143. doi: 10.1016/S0273-1177(02)00277-6 Google Scholar
  55. 55.
    Peymirat C, Richmond AD, Emery BA, Roble RG (1998) A magnetosphere thermosphere ionosphere electrodynamics general circulation model. J Geophys Res 103(A8): 17,467–17,477. doi: 10.1029/98JA01235
  56. 56.
    Picone JM, AE Hedin, DP Drob, AC Aikin (2002) NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res 107(A12). doi: 10.1029/2002JA009430
  57. 57.
    Picone JM, JT Emmert, J Lean (2005) Thermospheric densities derived from spacecraft orbits - I. Accurate processing of two-line element sets. J Geophys Res 110(A03301). doi: 10.1029/2004JA010585
  58. 58.
    Prölss GW (2004) Physics of the earth’s space environment. SpringerGoogle Scholar
  59. 59.
    Reigber Ch, Schwintzer P, Lühr H (1999) The CHAMP geopotential mission, in Bollettino di Geofisica Teoretica ed Applicata. In: Marson I, Sünkel H (eds) Proceedings of the 2nd joint meeting of the international gravity and the international geoid commission, Trieste 7–12 Sept–Dec 1998, ISSN 0006–6729, vol 40(3–4), pp 285–289Google Scholar
  60. 60.
    Rhoden EA, Forbes JM, Marcos FA (2000) The influence of geomagnetic and solar variabilities on lower thermosphere density. J Atmos Sol Terr Phys 62:999–1013CrossRefGoogle Scholar
  61. 61.
    Rosengren M (2000) Orbit control of ERS-1, ERS-2 and ENVISAT to support SAR interferometry. In: ERS and Envisat symposium, Gothenburg, 16–20 Oct 2000, ESA SP–461Google Scholar
  62. 62.
    Rudolph A, Kuijper D, Ventimiglia L, Matatoros MAG, Bargellini P (2005) Envisat orbit control - philosophy, experience and challenge. In: Lacoste H , Ouwehand L (eds) Proceedings of the 2004 envisat and ERS symposium, Salzburg, Austria, ESA SP-572, 6–10 Sep 2004Google Scholar
  63. 63.
    Schunk RW, Nagy AF (2009) Ionospheres: physics, plasma physics and chemistry. 2nd editionGoogle Scholar
  64. 64.
    Sibthorpe AJ (2006) Precision non-conservative force modelling for low Earth orbiting spacecraft. PhD dissertation, Department of Geomatic Engineering, University College LondonGoogle Scholar
  65. 65.
    Storz MF, Bowman BR, Branson JI (2002) High accuracy satellite drag model (HASDM). In: AIAA/AAS astrodynamics specialist conference and exhibit, Monterey, California, AIAA, 5–8 Aug 2002, pp 2002–4886Google Scholar
  66. 66.
    Sutton EK, Forbes JM, Nerem RS (2005) Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res 110(A09S40). doi: 10.1029/2004JA010985
  67. 67.
    Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment, mission overview and early results. Geophys Res Lett 31(L09607)Google Scholar
  68. 68.
    Tavernier G, Fagard H, Feissel-Vernier M, Le Bail K, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The international DORIS service: genesis and early achievements. J Geod 80(8–1):403–417. doi: 10.1007/s00190-006-0082-4 CrossRefGoogle Scholar
  69. 69.
    Thuillier G, Bruinsma S (2001) The Mg II index for upper atmosphere modelling. Ann Geophys 19(2):219–228CrossRefGoogle Scholar
  70. 70.
    Tobiska WK, Bouwer SD, Bowman BR (2006) The development of new solar indices for use in thermospheric density modeling. In: AIAA, AIAA, pp 2006–6165Google Scholar
  71. 71.
    Willis P, Deleflie F, Barlier F, Bar-Sever YE, Romans LJ (2005) Effects of themosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct-Nov 2003) using DORIS and SLR data. Adv Space Res 36:522–533. doi: 10.1016/j.asr.2005.03.029 CrossRefGoogle Scholar
  72. 72.
    Woodburn J, Lynch S (2005) A numerical study of orbit lifetime. In: AIAA/AAS astrodynamics specialist conference and exhibit, Lake Tahoe, AAS 05-297Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2012

Authors and Affiliations

  • Eelco Doornbos
    • 1
  1. 1.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations