CAREY: ClimAtological ContRol of EmergencY Regions

  • Maribel Acosta
  • Marlene Goncalves
  • Maria-Esther Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7046)


Nowadays, climate changes are impacting life on Earth; ecological effects as warming of sea-surface temperatures, catastrophic events as storms or mudslides, and the increase of infectious diseases, are affecting life and development. Unfortunately, experts predict that global temperatures will increase even more during the next years; thus, to decide how to assist possibly affected people, experts require tools that help them to discover potential risky regions based on their weather conditions. We address this problem and propose a tool able to support experts in the discovery of these risky areas. We present CAREY, a federated tool built on top of a weather database, that implements a semi-supervised data mining approach to discover regions with similar weather observations which may characterize micro-climate zones. Additionally, Top-k Skyline techniques have been developed to rank micro-climate areas according to how close they are to a given weather condition of risk. We conducted an initial experimental study as a proof-of-concepts, and the preliminary results suggest that CAREY may provide an effective support for the visualization of potential risky areas.


Risk Condition Skyline Query Geospatial Information Skyline Point Weather Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acosta, M., Vidal, M.-E., Castillo, J., Lampo, T., Ruckhaus, E.: ANAPSID: AN Adaptive query ProcesSing engIne for sparql enDpoints. In: Accepted at ISWC 2011 (2011)Google Scholar
  2. 2.
    Balke, W.-T., Guntzer, U.: Multi-objective query processing for database systems. In: VLDB, pp. 936–947 (2004)Google Scholar
  3. 3.
    Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient Distributed Skylining for Web Information Systems. In: Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Basak, J., Sudarshan, A., Trivedi, D., Santhanam, M.S.: Weather data mining using independent component analysis. Journal of Machine Learning Research 5, 239–253 (2004)MathSciNetGoogle Scholar
  5. 5.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE Computer Society, Washington, DC (2001)CrossRefGoogle Scholar
  6. 6.
    Carey, J.: Our extreme future: Predicting and coping with the effects of a changing climate. Scientific American 6 (2011)Google Scholar
  7. 7.
    Carey, M.J., Kossmann, D.: On saying “Enough already!” in SQL. SIGMOD Rec. 26(2), 219–230 (1997)CrossRefGoogle Scholar
  8. 8.
    Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: Finding k-dominant skylines in high dimensional space. In: SIGMOD 2006: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 503–514. ACM, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Chen, L., Gao, S., Anyanwu, K.: Efficiently Evaluating Skyline Queries on RDF Databases. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp. 123–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    de Sherbinin, A., Warner, K., Ehrhart, C.: Casualties of climate change: Sea-level rises could displace tens of millions. Scientific American 1 (2011)Google Scholar
  12. 12.
    Goncalves, M., Vidal, M.-E.: Reaching the Top of the Skyline: An Efficient Indexed Algorithm for Top-k Skyline Queries. In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 471–485. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: The analysis of a simple -means clustering algorithm. In: Symposium on Computational Geometry, pp. 100–109 (2000)Google Scholar
  14. 14.
    Mithal, V., Garg, A., Boriah, S., Steinbach, M., Kumar, V., Potter, C., Klooster, S.A., Castilla-Rubio, J.C.: Monitoring global forest cover using data mining. ACM TIST 2(4), 36 (2011)Google Scholar
  15. 15.
    Pelleg, D., Moore, A.W.: X-means: Extending k-means with efficient estimation of the number of clusters. In: ICML, pp. 727–734 (2000)Google Scholar
  16. 16.
    Race, C., Steinbach, M., Ganguly, A., Semazzi, F.H.M., Kumar, V.: A knowledge discovery strategy for relating sea surface temperatures to frequencies of tropical storms and generating predictions of hurricanes under 21st-century global warming scenarios. In: CIDU, pp. 204–212 (2010)Google Scholar
  17. 17.
    Steinbach, M., Tan, P.-N., Kumar, V., Klooster, S.A., Potter, C.: Discovery of climate indices using clustering. In: KDD, pp. 446–455 (2003)Google Scholar
  18. 18.
    Vlachou, A., Vazirgiannis, M.: Link-based Ranking of Skyline Result Sets. In: Proceedings of the 3rd Multidisciplinary Workshop on Advances in Preference Handling, M-Pref (2007)Google Scholar
  19. 19.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer 25(3), 38–49 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maribel Acosta
    • 1
  • Marlene Goncalves
    • 1
  • Maria-Esther Vidal
    • 1
  1. 1.Universidad Simón BolívarVenezuela

Personalised recommendations