The Role of Class Dependencies in Designing Ontology-Based Databases

  • Chedlia Chakroun
  • Ladjel Bellatreche
  • Yamine Ait-Ameur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7046)


Recently, an important number of applications are producing and manipulating mountains of ontological data. Managing them efficiently needs the development of scalable solutions. Ontology-based databases (OBDB) are one of these solutions. An OBDB stores both ontological data and the ontology describing their meanings in the same repository. Several architectures supporting these OBDB were proposed by academicians and industrial editors of DBMS. Unfortunately, there is no available methodology for designing such OBDB. To overcome this limitation, this paper proposes to scale up the traditional database design approaches to OBDB. Our approach covers both conceptual and logical modeling phases. It assumes the availability of a domain ontology composed by primitive (canonical) and defined (non-canonical) concepts. Dependencies among properties and classes are captured and exploited to define a normalized logical model. A prototype implementing our design methodology on the OBDB OntoDB is outlined.


Static Dependency Dependency Graph Domain Ontology Ontology Model Ontological Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ausiello, G., D’Atri, A., Saccà, D.: Graph algorithms for functional dependency manipulation. Journal of the ACM 30(4), 752–766 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bellatreche, L., Aït Ameur, Y., Chakroun, C.: A design methodology of ontology based database applications. Logic Journal of the IGPL (2010)Google Scholar
  3. 3.
    Evren, S., Bijan, P.: Pellet: An owl dl reasoner. In: International Workshop on Description Logics (DL 2004), pp. 6–8 (2004)Google Scholar
  4. 4.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Calbimonte, J.P., Porto, F., Maria Keet, C.: Functional dependencies in owl abox. In: Brazilian Symposium on Databases (SBBD), pp. 16–30 (2009)Google Scholar
  6. 6.
    Chaudhuri, S., Narasayya, V.: Self-tuning database systems: A decade of progress. In: VLDB, pp. 3–14 (September 2007)Google Scholar
  7. 7.
    Chen, L., Martone, M.E., Gupta, A., Fong, L., Wong-Barnum, M.: Ontoquest: Exploring ontological data made easy. In: Proceedings of the International Conference on Very Large Databases, pp. 1183–1186 (2006)Google Scholar
  8. 8.
    Das, S., Chong, E.I., Eadon, G., Srinivasan, J.: Supporting ontology-based semantic matching in rdbms. In: VLDB, pp. 1054–1065 (2004)Google Scholar
  9. 9.
    Dehainsala, H., Pierra, G., Bellatreche, L.: OntoDB: An Ontology-based Database for Data Intensive Applications. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 497–508. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Fankam, C., Jean, S., Bellatreche, L., Aït-ameur, Y.: Extending the ANSI/SPARC Architecture Database with Explicit Data Semantics: An Ontology-based Approach. In: Morrison, R., Balasubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 318–321. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Methodologies. McGraw Hill (2009)Google Scholar
  12. 12.
    Jean, S., Aït Ameur, Y., Pierra, G.: Querying ontology based databases - the ontoql proposal. In: Proceedings of the 18th International Conference on Software Engineering & Knowledge Engineering (SEKE 2006), pp. 166–171 (2006)Google Scholar
  13. 13.
    Jean, S., Pierra, G., Aït Ameur, Y.: Domain ontologies: A database-oriented analysis. In: WEBIST (1), pp. 341–351 (2006)Google Scholar
  14. 14.
    Nebot, V., Berlanga, R., Pérez, J.M., Aramburu, M.J., Pedersen, T.B.: Multidimensional Integrated Ontologies: A Framework for Designing Semantic Data Warehouses. In: Spaccapietra, S., Zimányi, E., Song, I.-Y. (eds.) Journal on Data Semantics XIII. LNCS, vol. 5530, pp. 1–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pan, Z., Zhang, X., Heflin, J.: Dldb2: A scalable multi-perspective semantic web repository. In: International Conference on Web Intelligence, pp. 489–495 (2008)Google Scholar
  16. 16.
    Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In: DOLAP, pp. 1–8 (2007)Google Scholar
  17. 17.
    Romero, O., Calvanese, D., Abelló, A., Rodriguez-Muro, M.: Discovering functional dependencies for multidimensional design. In: DOLAP, pp. 1–8 (2009)Google Scholar
  18. 18.
    Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD Record 31(4), 12–17 (2002)CrossRefGoogle Scholar
  19. 19.
    Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design: An ontology management and conceptual modeling environment. ACM Transactions on Database Systems 31(3), 1064–1094 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chedlia Chakroun
    • 1
  • Ladjel Bellatreche
    • 1
  • Yamine Ait-Ameur
    • 1
  1. 1.LISI/ENSMA - Poitiers University FuturoscopeFrance

Personalised recommendations