High Enthalpy Non-equilibrium Shock Layer Flows: Selected Practical Applications

  • S. Karl
  • J. Martinez Schramm
  • K. Hannemann
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 7)


A space vehicle (re)-entering the atmosphere of Earth or a different planet is subjected to flows that place the vehicle under extreme physical conditions. High temperature effects such as dissociation, vibrational excitation, electronic excitation or gas radiation within the shock layer in front of the vehicle will have to be correctly modelled by computational fluid dynamics (CFD) tools to be used in the framework of the design process of future entry or re-entry configurations. One important step during the development of a CFD code is the validation of the physical-chemical models used to describe the high temperature effects. The strategy generally pursued is to validate these models with data obtained in ground based testing facilities and / or flight tests. The validated CFD tool can subsequently be used for ground-to-flight extrapolation and for the computation of the flow field past (re)-entry vehicles at free flight conditions.


Computational Fluid Dynamic Shock Tube Surface Heat Flux Shock Layer Radiative Transfer Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.D.: Hypersonic and High Temperature Gas Dynamics. McGraw-Hill (1989)Google Scholar
  2. 2.
    Baldwin, B.S., Lomax, H.: AIAA Paper 78–257 (1978)Google Scholar
  3. 3.
    Blottner, F.G., Johnson, M., Ellis, M.: Chemically reacting viscous flow program for multi-component gas mixtures. Sandia Laboratories, SC-RR-70-745 (1971)Google Scholar
  4. 4.
    Brück, S., Radespiel, R., Longo, J.M.A.: AIAA Paper 97–0275 (1997)Google Scholar
  5. 5.
    Dunn, M.G., Kang, S.W.: Theoretical and experimental studies of reentry plasmas, NASA CR-2232 (1973)Google Scholar
  6. 6.
    Gökcen, T.: AIAA Paper 2004-2469 (2004)Google Scholar
  7. 7.
    Gregory, J.E., Cinella, P.: Computers and Fluids 24 (5), 523 (1995)Google Scholar
  8. 8.
    Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.P.: A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Non-Equilibrium Calculations to 30000 K. In: NASA Reference Publication, vol. (1232) (1990)Google Scholar
  9. 9.
    Hannemann, K., Schnieder, M., Reimann, B., Martinez Schramm, J.: AIAA Paper 2000-2593 (2000)Google Scholar
  10. 10.
    Hannemann, K., Martinez Schramm, J., Karl, S., Beck, W.H.: AIAA Paper 2002-2913 (2002)Google Scholar
  11. 11.
    Hannemann, K.: AIAA Paper 2003-0978 (2003)Google Scholar
  12. 12.
    Hannemann, K., Martinez Schramm, J.: High Enthalpy, High Pressure Short Duration Testing of Hypersonic Flows. In: Tropea, C., Foss, J., Yarin, A. (eds.) Springer Handbook of Experimental Fluid Mechanics, vol. 1081. Springer, Heidelberg (2007)Google Scholar
  13. 13.
    Hannemann, K., Martinez Schramm, J., Karl, S.: Recent extensions to the High Enthalpy Shock Tunnel Göttingen (HEG). In: Proceedings of the 2nd International ARA Days Ten Years after ARD, Arcachon, France (2008)Google Scholar
  14. 14.
    Harland, D.M.: Mission to Saturn: Cassini and the Huygens Probe, 1st edn. Springer, Berlin (2002)Google Scholar
  15. 15.
    Jarms, K.: Chemical non-equilibrium boundary layer flow including radiation, Stagiare report 1991-18/AR, VKI (1991)Google Scholar
  16. 16.
    Karl, S., Martinez Schramm, J., Hannemann, K.: High enthalpy shock tunnel flow past a cylinder. In: A basis for CFD validation New Results in Numerical and Experimental Fluid Mechanics, IV, vol. 87. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Lee, H., Buckius, R.O.: International Journal of Heat and Mass Transfer 26 (7), 1055 (1983)Google Scholar
  18. 18.
    Lohner, R., Ambrosiano, J.: Journal of Computational Physics 91 (1990)Google Scholar
  19. 19.
    Martinez Schramm, J.: Aerothermodynamische Untersuchung einer Wiedereintrittskonfiguration und ihrer Komponenten in einem impulsbetriebenen Hochenthalpie-Stoßkanal, Dissertation Universität Göttingen (2008)Google Scholar
  20. 20.
    Merzkirch, W.: Flow Visualization. Academic Press (1974)Google Scholar
  21. 21.
    Modest, M.F.: Radiative Heat Transfer. McGraw Hill (1992)Google Scholar
  22. 22.
    Olejniczak, J., Grinstead, J., Bose, D.: An Overview of Radiation Modeling Work for Shock Heated Gas for RTO AVT-136. In: 6th European Symposium on Aerothermodynamics for Space Vehicles, Versailles (2008)Google Scholar
  23. 23.
    Osawa, H., Matsuyama, S., Ohnishi, N., Sawada, K.: AIAA Paper 2006-3772 (2006)Google Scholar
  24. 24.
    Osawa, H., Matsuyama, S., Ohnishi, N., Furudate, M., Sawada, K.: J. Thermophysics and Heat Transfer 22 (2) (2008)Google Scholar
  25. 25.
    Park, C.: AIAA Paper 85-0247 (1985)Google Scholar
  26. 26.
    Park, C.: Nonequilibrium Hypersonic Aerothermodynamics. John Wiley & Sons, New York (1989)Google Scholar
  27. 27.
    Reimann, B., Johnston, I., Hannemann, V.: The DLR TAU- Code for High Enthalpy Flows, Notes on Num. Fluid Mech. and Multidisc. Design, vol. 87. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Sawada, K., Sakai, T., Mitsuda, M.: AIAA Paper 98-0861 (1998)Google Scholar
  29. 29.
    Shah, N.G.: New Method of Computation of Radiation Heat transfer in Combustion Chambers, PhD Thesis, London Imperial College of Science and Technology (1979)Google Scholar
  30. 30.
    Smith, A.J.: Plasma Radiation Database Parade, Final Report I3, ESA TR28/96 (2006)Google Scholar
  31. 31.
    Stalker, R.J.: AIAA Journal 5, 12 (1967)Google Scholar
  32. 32.
    Tecplot 360 User Manual, Tecplot Inc. (2010)Google Scholar
  33. 33.
    Walpot, L., Caillault, L., Molina, R.C., Laux, C.O., Blanquaert, T.: J. Thermophysics Heat Transfer 20(4) (2006)Google Scholar
  34. 34.
    Widhalm, M., Bartels, C., Meyer, J., Kroll, N.: AIAA Paper 2008-472 (2008)Google Scholar
  35. 35.
    Wright, M.J., Oleiniczak, J., Walpot, L., Raynaud, E., Magin, T., Caillault, L., Hollis, B.R.: AIAA Paper 2006-382 (2006)Google Scholar
  36. 36.
    Yang, W.J., Taniguchi, H., Kudo, K.: Radiative Heat Transfer by the Monte Carlo Method. In: Advances in Heat Transfer, vol. 27. Academic Press (1995)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • S. Karl
    • 1
  • J. Martinez Schramm
    • 1
  • K. Hannemann
    • 1
  1. 1.Spacecraft DepartmentGerman Aerospace Center, DLR, Institute of Aerodynamics and Flow TechnologyGöttingenGermany

Personalised recommendations