Radiation Phenomena behind Shock Waves

  • M. Y. Perrin
  • Ph. Riviére
  • A. Soufiani
Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES, volume 7)


Shock waves produce hot gases, which radiate. Radiation is a full partner of the many physical and chemical processes which have to be taken into account in physical gasdynamics in hot gases [1-3]. As the emitted radiation is linked to the thermochemical state of the media, it has been widely used as a non disturbing tool to characterize the state of media behind shock waves. The emitted radiation may also contribute to the heat flux suffered by an obstacle. This contribution will be important for a vehicle entering an atmosphere [4] at very high speed such those experienced in aerocapture entry or lunar return for example. For vehicles entering the Earth’s atmosphere at velocity higher than 10km/s, the role of radiative heating in the total flux balance becomes essential. For Galileo entry into Jovian atmosphere the contribution of radiation was dominant for most of the entry trajectory. Accurate predictions of the non-equilibrium radiation in shock layers are thus required for efficient design of thermal protection systems. Radiation may also modify the gas dynamics. The emitted photons can either leave the flow, giving rise to the so-called radiative cooling, or can be re-absorbed, contributing to the transport of energy. Under some conditions, the processes of emission and absorption of photons have to be included in the equations describing the evolution of atomic and molecular internal states. As the emission and absorption coefficients depend on the internal state of gases, the radiation field and the internal state of gases must be determined self-consistently. The role of radiation is particularly important in the so-called radiative shocks [1,2], which are present in a wide range of astronomical objects and which can be generated in the laboratory using high-power lasers. In these high Mach number shocks, the radiation energy density, flux and stress tensor have to be included in the set of conservative equations; furthermore the medium may be photoionized ahead of the shock front giving rise to precursors which modify the shock jump relations. In these cases, the radiation drives the flow. In the present paper, we will mainly be concerned by radiation in hypersonic flows encountered in atmospheric entries. The incident probe velocities range from about 5 km/s for a low-speed Mars or Titan entry to almost 60 km/s for a polar probe to Jupiter. At these speeds, a strong shock wave forms in front of the entering probe that dissociates and, for the highest velocities, ionizes the gas.


Shock Wave Radiative Transfer Local Thermodynamic Equilibrium Direct Simulation Monte Carlo Radiative Transfer Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeldovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1966)Google Scholar
  2. 2.
    Mihalas, D., Mihalas, B.W.: Foundations of Radiation Hydrodynamics. Dover Publications, Inc. (1999)Google Scholar
  3. 3.
    Park, C.: Nonequilibrium hypersonic aerothermodynamics. A Wiley-Interscience Publication, New York (1990)Google Scholar
  4. 4.
    Park, C.: Overview of Radiation Problems in Planetary Entry. Proceedings of the International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, ESA-SP-583 (2005)Google Scholar
  5. 5.
    Park, C.: Nonequilibrium Air Radiation (NEQAIR) Program: User’s Manual. NASA TM 86707 (1995)Google Scholar
  6. 6.
    Hartung, L.C.: Predicting radiative heat transfer in thermo-chemical nonequilibrium flow-fields: theory and user’s manual for the LORAN code. NASA TM 4564 (1994)Google Scholar
  7. 7.
    Fujita, K., Abe, T.: SPRADIAN. Structured Package for Radiation Analysis: theory and application, ISAS Report No. 669 (1997)Google Scholar
  8. 8.
    Surzhikov, S.: Radiation Modeling and Spectral Data. VKI Lecture Series 2002-2007 on Physico-Chemical Models for High Enthalpy and Plasma Flow, VKI (2002)Google Scholar
  9. 9.
    Laux, C.: Radiation and nonequilibrium collisional-radiative models. In: VKI Lecture Series 2002-2007 on Physico-Chemical Models for High Enthalpy and Plasma Flows Modeling, VKI (2002)Google Scholar
  10. 10.
    Smith, A., Wood, A., Dubois, J., Fertig, M., Pfeiffer, N.: Technical Paper 3. ESTEC contract11148/94/NL/FG, FGE TR28/96 (2006)Google Scholar
  11. 11.
    Johnston, C., Hollis, B., Sutton, K.: Journal of Spacecraft and Rockets 45, 865 (2008)CrossRefGoogle Scholar
  12. 12.
    Passarinho, P., Lino da Silva, M.: Journal of Molecular Spectroscopy 236, 148 (2006)CrossRefGoogle Scholar
  13. 13.
    Perrin, M.Y., Rivière, P., Soufiani, A.: Radiation database for Earth and Mars entry. In: AVT-162 RTO AVT/VKI Lecture Series on Non-Equilibrium Gas Dynamics, from Physical Models to Hypersonic Flights, VKI (2008)Google Scholar
  14. 14.
    Chauveau, S., Perrin, M.Y., Rivière, P., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 72, 503 (2002)Google Scholar
  15. 15.
    Chauveau, S., Deron, C., Perrin, M.Y., Rivière, P., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 77, 113-130 (2003)Google Scholar
  16. 16.
    Babou, Y., Rivière, P., Perrin, M.Y., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 110, 89 (2009)Google Scholar
  17. 17.
    Hollas, J.M.: High Resolution Spectroscopy. Butterworths (1982)Google Scholar
  18. 18.
    Cowan, R.D.: The Theory of Atomic Structure and Spectra. University of California Press, Berkeley (1981)Google Scholar
  19. 19.
    Herzberg, G.: Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd edn. Van Nostrand Reinhold, New York (1950)Google Scholar
  20. 20.
    Lefebvre-Brion, H., Field, R.W.: Perturbations in the Spectra of Diatomic Molecules. Academic Press Inc. (1986)Google Scholar
  21. 21.
    Griem, H.R.: Principles of plasma spectroscopy. Cambridge University Press (1997)Google Scholar
  22. 22.
    Ralchenko, Y., Kramida, A.E., Reader, J.: NIST ASD Team, NIST Atomic Spectra Database (version 4.0), National Institute of Standards and Technology, Gaithersburg, MD (2010),
  23. 23.
    The Opacity Project Team, The opacity Project, vol.1. Institute of Physics Publishing, Bristol and Philadelphia (1995),
  24. 24.
    Traving, G.: Plasma Diagnostics. McGraw-Hill Book Company, New York (1964)Google Scholar
  25. 25.
    Rivière, P.: Journal of Quantitative Spectroscopy and Radiative Transfer 73, 91 (2002)Google Scholar
  26. 26.
    Babou, Y., Riviere, P., Perrin, M.Y., Soufani, A.: International Journal of Thermophysics 30, 416 (2009)Google Scholar
  27. 27.
    Zare, R.N., Schmeltejopf, A.L., Harrop, W.J., Albritton, D.L.: Journal of Molecular Spectroscopy 46, 37 (1973)Google Scholar
  28. 28.
    Kovacs, I.: Rotational structure in the spectra of diatomic molecules. American Elsevier Publishing company Inc., New York (1969)Google Scholar
  29. 29.
    Whiting, E.E., Schadee, A., Tatum, J.B., Hougen, J.T., Nicholls, R.W.: Journal of Molecular Spectroscopy 80, 249 (1980)Google Scholar
  30. 30.
    Hartmann, J.M., Boulet, C., Robert, D.: Collisional effects on molecular spectra. Elsevier (2008)Google Scholar
  31. 31.
    Breene, R.G.: Applied Optics 6, 141 (1967)Google Scholar
  32. 32.
    Lamet, J.M., Babou, Y., Rivière, P., Perrin, M.Y., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 109, 235 (2008)Google Scholar
  33. 33.
    Morris, J.C., Key, R.U., Bach, G.R.: Physical Review 159, 113 (1967); Morris, J.C., Krey, R.U., Garrison, R.L.: Physical Review 180, 167 (1969)Google Scholar
  34. 34.
    Cruden, B.A., Martinez, R., Grinstead, J.H., Olejniczak, J.: AIAA Paper 2009-4240 (2009)Google Scholar
  35. 35.
    Yamada, G., Takayanagi, H., Suzuki, T., Fujita, K.: AIAA paper 2009-4254 (2009)Google Scholar
  36. 36.
    Cauchon, D.L.: Radiative heating results from the FireII flight experiment at a reentry velocity of 11.4 kilometers per second, NASA TM X-1402Google Scholar
  37. 37.
    Mazoue, F., Marraffa, L.: Determination of the radiation emission during the FIRE II entry. In: Proceedings of the 2nd International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Rome, September 6-8 (2006)Google Scholar
  38. 38.
    Lamet, J.M.: Transferts radiatifs dans les écoulements hypersoniques de rentrée atmosphérique terrestre, Thèse de doctorat de l’Ecole Centrale, Paris (2009)Google Scholar
  39. 39.
    Lowke, J.J.: Journal of Quantitative Spectroscopy and Radiative Transfer 14, 111 (1974)Google Scholar
  40. 40.
    Holstein, H.: Physical Review 72, 1212 (1947)Google Scholar
  41. 41.
    Holstein, H.: Physical Review 83, 1159 (1951)Google Scholar
  42. 42.
    Irons, F.E.: Journal of Quantitative Spectroscopy and Radiative Transfer 22, 1 (1979)Google Scholar
  43. 43.
    Bourdon, A., Térésiak, Y., Vervisch, P.: Physical Review E 57, 4684 (1998)Google Scholar
  44. 44.
    Pestehe, S.J., Tallents, G.J.: Journal of Quantitative Spectroscopy and Radiative Transfer 72, 853 (2002)Google Scholar
  45. 45.
    Fisher, V.I., Fisher, D.V., Maron, Y.: High Energy Density Physics 3, 283 (2007)Google Scholar
  46. 46.
    Novikov, V.G., Ivanov, V.V., Koshelev, K.N., Krivtsun, V.M., Solomyannaya, A.D.: High Energy Density Physics 3, 198 (2007)Google Scholar
  47. 47.
    Sohn, I., Li, Z., Levin, D.A.: AIAA Paper 2011-533 (2011)Google Scholar
  48. 48.
    Goody, R., Yung, Y.: Atmospheric Radiation Oxford Univ. Press, New York (1989)Google Scholar
  49. 49.
    Taine, J., Soufiani, A.: Adv. Heat Transfer 33, 295 (1999)Google Scholar
  50. 50.
    Ludwig, C., Malkmus, W., Reardon, J., Thomson, J.: Handbook of infrared radiation from combustion gases, Technical Report NASA SP-3080, Washington DC (1973)Google Scholar
  51. 51.
    Young, S.: Journal of Quantitative Spectroscopy and Radiative Transfer 15, 483 (1975)Google Scholar
  52. 52.
    Young, S.: Journal of Quantitative Spectroscopy and Radiative Transfer 18, 1 (1977)Google Scholar
  53. 53.
    Lamet, J.-M., Rivière, P., Perrin, M.-Y., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 111, 87 (2010)Google Scholar
  54. 54.
    Rivière, P., Soufiani, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 112, 475–485 (2011)CrossRefGoogle Scholar
  55. 55.
    Rivière, P., Soufiani, A., Perrin, M.-Y., Riad, H., Gleizes, A.: Journal of Quantitative Spectroscopy and Radiative Transfer 56, 29 (1996)Google Scholar
  56. 56.
    Kahhali, N., Rivière, P., Perrin, M.-Y., Gonnet, J.-P., Soufiani, A.: J. Phys. D: Appl. Phys. 43, 425204 (2010)CrossRefGoogle Scholar
  57. 57.
    Zhang, H., Modest, M.F.: Journal of Quantitative Spectroscopy and Radiative Transfer 73, 349 (2002)Google Scholar
  58. 58.
    Bansal, A., Modest, M.F.: AIAA Paper 2011-247 (2011)Google Scholar
  59. 59.
    Chandrasekhar, S.: Radiative Transfer. Dover Publications Inc. (1960)Google Scholar
  60. 60.
    Siegel, R., Howell, J.R.: Thermal Radiation Heat Transfer. Taylor&Francis (2002)Google Scholar
  61. 61.
    Modest, M.F.: Radiative Heat Transfer. Elsevier (2003)Google Scholar
  62. 62.
    Carlson, B.G., Lathrop, K.D.: Discrete-ordinates angular quadrature of the neutron transport equation, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory (1964)Google Scholar
  63. 63.
    Larsen, E.W., Thömmes, G., Klar, A., Seaïd, M., Götz, T.: J. Comput. Phys. 183, 652 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Ségur, P., Bourdon, A., Marode, E., Bessieres, D., Paillol, J.H.: Plasma Sources Sci. Technol. 15, 648 (2006)CrossRefGoogle Scholar
  65. 65.
    Rouzeau, O., Tessé, L., Soubrié, T., Soufiani, A., Rivière, P., Zeitoun, D.: Journal of Thermophysics and Heat Transfer 22, 10 (2008)CrossRefGoogle Scholar
  66. 66.
    Lamet, J.M., Perrin, M.-Y., Soufiani, A., Rivière, P., Tessé, L.: In: Proc. Third Int. Workshop on Radiation of High Temperature Gases in Atmospheric Entry. ESA, Heraklion (2008)Google Scholar
  67. 67.
    Ozawa, T., Zhong, J., Levin, D.A.: Phys. Fluids 20, 046102 (2008)Google Scholar
  68. 68.
    Gnoffo, P.A., Gupta, R.N., Shinn, J.L.: Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium, NASA TP-2867, NASA Langley Research Center, Hampton, VA 23665-5225 (1989)Google Scholar
  69. 69.
    Capitelli, M. (ed.): Non-equilibrium vibrational kinetics, Topics in Current Physics, vol. 39. Springer, Heidelberg (1986)Google Scholar
  70. 70.
    Panesi, M., Magin, T., Bourdon, A., Bultel, A., Chazot, O.: Journal of Thermophysics and Heat Transfer 23, 236 (2009)CrossRefGoogle Scholar
  71. 71.
    Park, C.: AIAA Paper 84-0306 (1984)Google Scholar
  72. 72.
    Magin, T.E., Caillault, L., Bourdon, A., Laux, C.O.: J. Geophys. Research 111, E07S12 (2006)Google Scholar
  73. 73.
    Gökçen, T., Park, C.: AIAA paper 91-0570 (1991)Google Scholar
  74. 74.
    Hartung, L.C., Mitcheltree, R.A., Gnoffo, P.A.: J. Thermophys. Heat Transfer 8(2), 244 (1994)CrossRefGoogle Scholar
  75. 75.
    Johnston, C.: Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry. PhD thesis, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (November 17, 2006)Google Scholar
  76. 76.
    Kay, R.D., Gogel, T.H.: AIAA Paper 94-2091 (1994)Google Scholar
  77. 77.
    Gnoffo, P.A., Johnston, C.O., Thompson, R.A.: AIAA Paper 2009-1399 (2009)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • M. Y. Perrin
    • 1
  • Ph. Riviére
    • 1
  • A. Soufiani
    • 1
  1. 1.Laboratoire EM2C, CNRS UPR288, Ecole Centrale ParisChatenay-MalabryFrance

Personalised recommendations