Semantic Attachments for Domain-Independent Planning Systems
Abstract
Solving real-world problems using symbolic planning often requires a simplified formulation of the original problem, since certain subproblems cannot be represented at all or only in a way leading to inefficiency. For example, manipulation planning may appear as a subproblem in a robotic planning context or a packing problem can be part of a logistics task. In this paper we propose an extension of PDDL for specifying semantic attachments. This allows the evaluation of grounded predicates as well as the change of fluents by externally specified functions. Furthermore, we describe a general schema of integrating semantic attachments into a forward-chaining planner and report on our experience of adding this extension to the planners FF and Temporal Fast Downward. Finally, we present some preliminary experiments using semantic attachments.
Keywords
Packing Problem External Module Module Call Logistics Domain Callback FunctionPreview
Unable to display preview. Download preview PDF.
References
- 1.Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artif. Intell. 116(1-2), 123–191 (2000)MathSciNetMATHCrossRefGoogle Scholar
- 2.Bäckström, C., Nebel, B.: Complexity results for SAS + planning. Computational Intelligence 11(4), 625–655 (1995)MathSciNetCrossRefGoogle Scholar
- 3.Blum, A., Furst, M.: Fast planning through planning graph analysis. In: Proc. IJCAI, pp. 1636–1642 (1995)Google Scholar
- 4.Botea, A., Müller, M., Schaeffer, J.: Using abstraction for planning in sokoban. In: Proc. Computers and Games, Edmonton, Canada, pp. 360–375 (2003)Google Scholar
- 5.Cambon, S., Gravot, F., Alami, R.: A robot task planer that merges symbolic and geometric reasoning. In: Proc. ECAI, pp. 895–899. IOS Press (2004)Google Scholar
- 6.Eyerich, P., Mattmüller, R., Röger, G.: Using the context-enhanced additive heuristic for temporal and numeric planning. In: Proc. ICAPS, pp. 130–137 (2009)Google Scholar
- 7.Fox, M., Long, D.: Identifying and managing combinatorial optimisation subproblems in planning. In: Proc. IJCAI, pp. 445–452 (2001)Google Scholar
- 8.Fox, M., Long, D.: PDDL 2. 1: An extension to PDDL for expressing temporal planning domains. JAIR 20, 61–124 (2003)MATHGoogle Scholar
- 9.Helmert, M.: The Fast Downward planning system. JAIR 26, 191–246 (2006)MATHGoogle Scholar
- 10.Helmert, M.: Concise finite-domain representations for PDDL planning tasks. AIJ 173, 503–535 (2009)MathSciNetMATHGoogle Scholar
- 11.Helmert, M., Geffner, H.: Unifying the causal graph and additive heuristics. In: Proc. ICAPS 2008, pp. 140–147 (2008)Google Scholar
- 12.Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. JAIR 14, 253–302 (2001)MATHGoogle Scholar
- 13.Konolige, K., Nilsson, N.J.: Multiple-agent planning systems. In: AAAI, pp. 138–142 (1980)Google Scholar
- 14.Kvarnström, J., Doherty, P.: TALplanner: A temporal logic based forward chaining planner. Ann. Math. Artif. Intell. 30(1-4), 119–169 (2000)MATHCrossRefGoogle Scholar
- 15.Martello, S., Pisinger, D., Vigo, D.: The three-dimensional bin packing problem. Oper. Res. 48, 256–267 (2000)MathSciNetMATHCrossRefGoogle Scholar
- 16.Nau, D.S., Au, T.-C., Ilghami, O., Kuter, U., William Murdock, J., Wau, D., Yaman, F.: Shop2: An HTN planning system. JAIR 20, 379–404 (2003)MATHGoogle Scholar
- 17.Orkin, J.: Three states and a plan: The A.I. of F.E.A.R. In: Proc. Game Developers Conference, San Jose, California (2006)Google Scholar
- 18.Srivastava, B., Kambhampati, S.: Scaling Up Planning by Teasing Out Resource Scheduling. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 172–186. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 19.Weyhrauch, R.W.: Prolegomena to a theory of mechanized formal reasoning. Artif. Intell. 13(1-2), 133–170 (1980)MathSciNetMATHCrossRefGoogle Scholar