Identifying Relevant Tactile Features for Object Identification

  • Matthias Schöpfer
  • Michael Pardowitz
  • Robert Haschke
  • Helge Ritter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 76)


Tactile sensing arrays for robotic applications become more and more popular these days. This allows us to equip robots with sensing abilities similar to those of our human skin. This article presents an approach to tactile-based recognition of objects and evaluates the utility of various feature extractors for tactile processing.

Extracting these features from a tactile database, we describe a system that combines a discretization step with the well-known C4.5 algorithm in an object classification task. We analyze the usefulness of the features in terms of entropy-based considerations, taking into account the generated decision trees and report our results that give important hints for feature selection.


Mutual Information Information Gain Tactile Sensor Tactile Image Tactile Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cover, T.M., Thomas, J.A.: Elements of information theory. John Wiley & Sons, Inc. (2006)Google Scholar
  2. 2.
    Gunji, D., Mizoguchi, Y., Teshigawara, S., Ming, A., Namiki, A., Ishikawaand, M., Shimojo, M.: Grasping force control of multi-fingered robot hand based on slip detection using tactile sensor. In: 2008 IEEE International Conference on Robotics and Automation, pp. 2605–2610. IEEE (2008), doi:10.1109/ROBOT.2008.4543605Google Scholar
  3. 3.
    Heidemann, G., Ritter, H.J.: Visual Checking of Grasping Positions of a Three-Fingered Robot Hand, pp. 891–898. Springer, Heidelberg (2001), doi:10.1007/3-540-44668-0_123Google Scholar
  4. 4.
    de Hoon, M.J.L., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software. Bioinformatics (Oxford, England) 20(9), 1453–1454 (2004), doi:10.1093/bioinformatics/bth078CrossRefGoogle Scholar
  5. 5.
    Hu, M.K.: Visual pattern recognition by moment invariants. IEEE Transactions on Information Theory 8(2), 179–187 (1962), doi:10.1109/TIT.1962.1057692zbMATHCrossRefGoogle Scholar
  6. 6.
    Kerpa, O., Weiss, K., Wörn, H.: Development of a flexible tactile sensor system for a humanoid robot. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), pp. 1–6. IEEE (October 2003), doi:10.1109/IROS.2003.1250596Google Scholar
  7. 7.
    Klatzky, R.L., Lederman, S.J.: Identifying objects from a haptic glance. Perception & Psychophysics 57(8), 1111–1123 (1995)CrossRefGoogle Scholar
  8. 8.
    Lederman, S.J., Klatzky, R.L.: Haptic classification of common objects: Knowledge-driven exploration*1. Cognitive Psychology 22(4), 421–459 (1990), doi:10.1016/0010-0285(90)90009-SCrossRefGoogle Scholar
  9. 9.
    Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. Fifth Berkeley Symp. on Math. Statist. and Prob., vol. 1, pp. 281–297 (1967)Google Scholar
  10. 10.
    Murakami, K., Matsuo, K., Hasegawa, T., Kurazume, R.: A Decision Method for Placement of Tactile Elements on a Sensor Glove for the Recognition of Grasp Types. IEEE/ASME Transactions on Mechatronics 15(1), 157–162 (2010), doi:10.1109/TMECH.2009.2023647CrossRefGoogle Scholar
  11. 11.
    Quinlan, J.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986), doi:10.1023/A:1022643204877Google Scholar
  12. 12.
    Quinlan, J.R.: Improved Use of Continuous Attributes in C 4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996), doi:10.1613/jair.279zbMATHGoogle Scholar
  13. 13.
    Schöpfer, M., Ritter, H.J., Heidemann, G.: Acquisition and Application of a Tactile Database. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1517–1522. IEEE, Roma (2007), doi:10.1109/ROBOT.2007.363539CrossRefGoogle Scholar
  14. 14.
    Schöpfer, M., Pardowitz, M., Ritter, H.J.: Using Entropy for Dimension Reduction of Tactile Data. In: Proceedings of the ICAR 14th International Conference on Advanced Robotics, pp. 1–6. IEEE, Munich (2009)Google Scholar
  15. 15.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3 (2001), doi:10.1145/584091.584093CrossRefGoogle Scholar
  16. 16.
    Yamakawa, Y., Namiki, A., Ishikawa, M., Shimojo, M.: One-handed knotting of a flexible rope with a high-speed multifingered hand having tactile sensors. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 703–708. IEEE (2007), doi:10.1109/IROS.2007.4399379Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Matthias Schöpfer
    • 1
  • Michael Pardowitz
    • 1
  • Robert Haschke
    • 1
  • Helge Ritter
    • 1
  1. 1.Cognitive Interaction Technology Excellence Cluster (CITEC)Bielefeld UniversityBielefeldGermany

Personalised recommendations