A High-Speed Tactile Sensor for Slip Detection

  • Carsten Schürmann
  • Matthias Schöpfer
  • Robert Haschke
  • Helge Ritter
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 76)

Abstract

Dexterous grasping and manipulation of objects with robot hands requires the ability to monitor contact locations in real-time and with good spatial resolution in order to close the control loop required for object and contact trajectory generation. The ability to recognize incipient slippage will allow for autonomous grasp force adaption – a major prerequisite to handle objects of unknown weight.

To provide appropriate tactile sensing capabilities, this paper presents the development of a modular tactile sensor system focusing especially on high frame rates (up to 1.9 kHz) and good spatial resolution (5mm). Larger sensor areas are composed from identical sensor modules providing a 16×16 matrix of tactels. We compare different tactel layouts and force-sensitive materials to achieve optimal sensitivity especially to low forces in order to facilitate detection of first touch.

Finally we demonstrate the versatility of the sensor to detect incipient slippage employing a Fourier transformation of the high-frequency tactile signal as input to a multi-layer perceptron, which learns to accomplish the classification tasks.

Keywords

Humanoid Robot Tactile Sensor Sensor Reading Sensor Output Central Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Craig, J.C., Lyle, K.B.: A comparison of tactile spatial sensitivity on the palm and fingerpad. Perception & Psychophysics 63(2), 337–347 (2001)CrossRefGoogle Scholar
  2. 2.
    Dahiya, R.S., Metta, G., Valle, M., Sandini, G.: Tactile sensing: from humans to humanoids. IEEE Transactions on Robotics 26(1), 1–20 (2010)CrossRefGoogle Scholar
  3. 3.
    Fujimoto, I., Yamada, Y., Morizono, T., Umetani, Y., Maeno, T.: Development of artificial finger skin to detect incipient slip for realization of static friction sensation. In: Proc. MFI, Tokyo, pp. 15–20 (2003)Google Scholar
  4. 4.
    Gröger, D., Gorges, N., Wörn, H.: Tactile sensing for an anthropomorphic robotic hand: Hardware and signal processing. In: Proc. IEEE International Conference on Robotics and Automation, ICRA, pp. 895–901 (2009)Google Scholar
  5. 5.
    Han, L., Trinkle, J.C.: Dextrous manipulation by rolling and finger gaiting. In: IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 730–735 (1998)Google Scholar
  6. 6.
    Hosoda, K., Tada, Y., Asada, M.: Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robotics and Autonomous Systems 109, 104–109 (2006)CrossRefGoogle Scholar
  7. 7.
    Johansson, R.S., Westling, G.: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research 56(3), 550–564 (1984)CrossRefGoogle Scholar
  8. 8.
    Johansson, R.S., Westling, G.: Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Experimental Brain Research 66(1), 141–154 (1987), doi:10.1007/BF00236210CrossRefGoogle Scholar
  9. 9.
    Kerpa, O., Weiss, K., Wörn, H.: Development of a flexible tactile sensor system for a humanoid robot. In: Proc. IROS, p. 6 (2003)Google Scholar
  10. 10.
    Lee, K.M., Foong, S.: Lateral optical sensor with slip detection of natural objects on moving conveyor. In: Proc. IEEE International Conference on Robotics and Automation, ICRA, pp. 329–334 (2008)Google Scholar
  11. 11.
    Makous, J., Friedman, R., Vierck, C.: A critical band filter in touch. J. Neurosciences 15(4), 2808–2818 (1995)Google Scholar
  12. 12.
    Röthling, F., Haschke, R., Steil, J.J., Ritter, H.: Platform portable anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2951–2956. IEEE, San Diego (2007), doi:10.1109/IROS.2007.4398963CrossRefGoogle Scholar
  13. 13.
    Scheibert, J., Leurent, S., Prevost, A., Debregeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323(5920), 1503–1506 (2009)CrossRefGoogle Scholar
  14. 14.
    Schmidt, P.A., Maël, E., Wrtz, R.P.: A sensor for dynamic tactile information with applications in human-robot interaction and object exploration. Robotics and Autonomous Systems 54(12), 1005–1014 (2006)CrossRefGoogle Scholar
  15. 15.
    Schöpfer, M., Schürmann, C., Pardowitz, M., Ritter, H.J.: Using a Piezo-Resistive Tactile Sensor for Detection of Incipient Slippage. In: Proceedings for the joint conference of ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), VDE, Munich, Germany, pp. 14–20 (2010)Google Scholar
  16. 16.
    Schürmann, C., Koiva, R., Ritter, R.H.H.: A modular high-speed tactile sensor for human manipulation research. In: WorldHaptics. IEEE (2011)Google Scholar
  17. 17.
    Shimojo, M.: Mechanical Filtering Effect of Elastic Cover for Tactile Sensor. IEEE Transactions on Robotics and Automation 13(1) (1997)Google Scholar
  18. 18.
    Teshigawara, S., Tadakuma, K., Ming, A., Ishikawa, M., Shimojo, M.: Development of high-sensitivity slip sensor using special characteristics of pressure conductive rubber. In: Proc. IEEE International Conference on Robotics and Automation, ICRA, pp. 3289–3294 (2009)Google Scholar
  19. 19.
    Weiss, K., Wörn, H.: The working principle of resistive tactile sensor cells. Mechatronics and Automation 1, 471–476 (2005)Google Scholar
  20. 20.
    Weiss Robotics (2009), DSAMOD6 tactile sensor product specification, http://www.weiss-robotics.de/produkte/dsamod-6.htm
  21. 21.
    Yussof, H., Wada, J., Ohka, M.: Object handling tasks based on active tactile and slippage sensation in a multi-fingered humanoid robot arm. In: Proc. IEEE International Conference on Robotics and Automation, ICRA, pp. 502–507 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Carsten Schürmann
    • 1
  • Matthias Schöpfer
    • 1
  • Robert Haschke
    • 1
  • Helge Ritter
    • 1
  1. 1.Cognitive Interaction Technology Excellence Cluster (CITEC)Bielefeld UniversityBielefeldGermany

Personalised recommendations